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A WEDGE-FLOW APPROACH TO LUBRICATION THEORY*

BY

W. E. LANGLOIS
International Business Machines Corporation, San Jose, California

Abstract. A theory of fluid-film lubrication is developed from an assumption
of local wedge-flow, rather than local parallel-channel flow. This leads to a generalization
of the Reynolds lubrication equation governing the pressure. A refinement of lubrication
theory does not necessarily follow: unlike the parallel-channel case, the stress field
may differ significantly from an isotropic pressure, so that imposing ambient conditions
on the bearing periphery does not always yield boundary conditions for the pressure
equation. If the bearing slope differs appreciably from zei'o only in the film interior,
consistent boundary conditions are once more available.

1. Introduction. In traditional approaches to the theory of fluid-film lubrication,
it is assumed, explicitly or implicitly, that the local velocity profile is parabolic. That
is to say, at a point where the lubricating film has thickness h, the velocity components
and pressure gradients assume values which could obtain if the bearing surfaces were
replaced by a pair of parallel plates with spacing h. Since, in general, the film thickness
varies from point to point, so do the velocity profile and pressure gradient. The hydro-
dynamical continuity equation imposes a constraint upon the point-to-point variation
of the velocity profile which, in turn, leads to a second order differential equation for
the pressure. For steady, two dimensional, incompressible flow, the constraint imposed
by the continuity equation is equivalent to a statement that the same volume of fluid
must flow through each cross-section of the bearing per unit time. The differential
equation for the pressure is subjected to the boundary condition that the pressure
be ambient at the bearing periphery. The use of this boundary condition entails two
approximations, both of which are consistent with the assumptions used in deriving
the differential equations: the contribution of the strain-rate term to the stress tensor
is negligible compared with the contribution of the pressure term; the adjustment
to ambient conditions at the bearing periphery takes place in a region whose width
is small compared with the lateral dimensions of the bearing. For the details of the
mathematical foundations underlying the steady-state theory of incompressible lubrica-
tion, see [1], Chap. 9.

In this paper, we present a somewhat more general approach to the two-dimensional
theory of steady-state lubrication by a film of incompressible fluid. We assume that
wedge flow, rather than parallel-channel flow, obtains locally. This leads to Reynolds'
lubrication equation in a generalized form, which allows for the possibility that the
slope of the bearing surface may not be everywhere small compared with unity (the
driving surface is assumed flat).

The problem of creeping viscous flow in a wedge-shaped region was treated by Milne
[2], who permitted arbitrary motion of the bearing surface in addition to the sliding
motion of the driving surface. With the methods set out in the present paper, Milne's
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solution could presumably be extended to bearings which can be approximated locally
by a wedge. The analysis would, however, be exceedingly complicated.

Chapter 7 of [1] includes a local-wedge-flow approximation method for pressure
flow of a highly viscous fluid through a channel of varying gap. The treatment here
is completely analogous, but the problem is more involved.

2. Creeping flow in a wedge. Consider first the problem of creeping viscous flow
in a wedge-shaped region (Fig. 1). If the walls of the wedge are stationary, the flow

7-7-7—7-7-7-7-7

Fig. 1. Wedge flow

generated by a line source lying along the vertex of the wedge is purely radial and has
been widely studied. For application to lubrication theory, however, we require that
one surface of the wedge be in steady motion parallel to itself. We denote its velocity
by W and the strength of the source by Q.

For the polar coordinate system shown in Fig. 1, the equations of two-dimensional
creeping flow of a fluid with viscosity /j. are

^ t TT\ I dV dp ( 2TT U 2 dF\ dp /v72T7 1 2 dU 7\Sra+M"0' ^-"{vu-?-?—»)' v + ?W~7h
(2.1)

where p denotes the pressure, U and 7 denote, respectively, the radial and azimuthal
components of velocity.

The no-slip condition at the walls requires that

U = W, 7 = 0 at 0 = 0; [7=7 = 0 at 0 = «. (2.2)
Finally, we have the volume flow condition

/"Jo
rU d6 = Q, (2.3)

which must hold for each value of r.
Through direct substitution, we can verify that the above equations and boundary

conditions are satisfied by setting

U = (W/E2)[(E2 — Ei6) cos 6 + (0 tan2 a — EJ sin 0]
+ (QA)[cos (20 — a) — cos a]/[sin a — a cos a], (2.4)

7 = (TF/£J2)[(tan2 a) 6 cos 6 + (^0 — a 2sec2a) sin 0],

p = C — (2/nT7/.&V)[(tan2 a) cos 0 + Ex sin 0]
+ (2juQ/r2)[cos (20 — a)]/[sin a — a cos a], (2.5)

where
E„ = a" sec2 a — tan" a, (n = 1, 2) (2.6)

and C is a constant of integration (the pressure infinitely far from the source).
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3. The local wedge-flow approximation. Assume now that the lubricating film
is contained between a flat driving surface and a curved bearing surface. We assume
that the bearing surface is curved only in the direction of motion and that the bearing
is infinitely long in the direction transverse to the motion. Moreover, we assume that
the curvature of the bearing surface is gentle enough so that the bearing can be approx-
imated locally by a wedge, as illustrated in Fig. 2.

Fig. 2. Bearing approximated locally by a wedge

The slope D is not assumed small compared with unity. However, the local Reynolds
number is proportional to h(x); hence, the discussion to follow involves the tacit assump-
tion that moderate to large values of D(x) do not extend over a wide enough range
to vitiate the creeping flow assumption.

We approximate the r and 6 components of velocity at the point (x, y) by the expres-
sions (2.4). It is erroneous to approximate p by (2.5), for the integrated value of the
pressure will, in general, receive contributions from portions of the film where the
slope of the bearing surface is quite different from D. Instead, we assume that the local
components of the pressure gradient are approximated by the derivatives of (2.5):

dp/dr = {2y.W/E2r2) [(tan2 a) cos 9 + Ex sin 6}

— (4/xQ/r3)[cos (20 — a)]/[sin a — a cos a],

dp/dd = (2fj.W/E2r) [(tan2 a) sin d — E1 cos 0]

— (4/iQ/r2)[sin (20 — a)]/[sin a - a cos a]. (3.1)

We now replace the polar coordinate system by the Cartesian system (x, y) as illus-
trated in Fig. 2. Thus

x = X + r cos 0, y = r sin 6. (3.2)

If we denote the components of velocity in the increasing x and y directions by u and v
respectively, we have

n—LI cos 6 V sin 6 — ̂  I X)M-~/]^2'

v = V cos e + U sin e = I x}f + y*y/2~ (3-3)

The somewhat ficticious length X can be removed from these transformations by noting
that

h = D(x — X). (3.4)
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Substituting equations (2.5) into (3.3) then gives us

u = w(\ 4- D*v ~ Elh _ El arctan Pi) +  hy(h - y)
V + h2 + D2y2 E2 E2 h) + D - arctan D (h2 + D2y2)2 '

„ = EJl (arctmDy _ MJlDhy) | 2QD* y\h - y)
E2 V h h2 + D2y2 ) D — arctan D (h2 + Ififf '

The quantities Ex , E2 which appear in these expressions are defined by (2.6). In terms
of D rather than a,

En = (1 + D2)(arctan D)n — D" (n = 1,2). (3.6)

For the components of the pressure gradient, we have

(3.7)

dp _ dp dr_ dp 89 h dp D2y dp
dx ~ dr dx dd dx ~ (h2 + D2y2)1/2 dr ~ K2 + D2y2 dd'

dp _ dp dr_ dp dd Dy dp Dh dp
dy ~drdy dd dy ~ Qi + D2y2)u2 dr + h2 + D2y2 dd'

With Eqs.r(3.1), (3.2), and (3.4), we then obtain

dp 2nWD3 Dh2 + 2E,hy - D3y2 4nQD3 h3 + Wh2y - 3D2hy2 - D4y3
dx ~ E2 (/i2 + D2y2)2 D - arctan D (h2 + D2y2)3

dv 2nWD2 EJi2 - 2D3hy - D2Exy2 4txQD* h3 - 3h2y - 3D2hy2 + D2V3
dy ~ E2 (h2 + D2y2)2 + D - arctan D (h2 + D2y2)3

(3.8)
In Cartesian coordinates, the equations of creeping flow are

dp/dx = nV2u, dp/dy = /iVY (3.9)

We expect that the expressions (3.5) and (3.8) will provide an approximate solution
to this system, provided that the rate of change of D is sufficiently slow. This condition
requires codification, for D'(x) is a dimensional quantity, and it is meaningless to speak
of its being "small." However, h(x)D'(x) is dimensionless and does, in fact, provide
a measure of the validity of (3.5) and (3.8). Geometrically, if the curvature of the
bearing surface is large, the film can be approximated locally by a wedge if and only
if the gap is correspondingly small, i.e., if and only if

h(x)D'(x) « 1. (3.10)

Since second derivatives appear in equations (3.9), we need also

h2D" « 1, (3.11)

which says, in effect, that sharp changes in curvature do not occur. If (3.10) and (3.11)
are satisfied, it is not difficult to verify by direct substitution that (3.5) and (3.8) satisfy
the flow equations (3.9).

If (3.10) is obeyed, so that terms in h(x)D'(x) can be neglected, we see that, with
dp/dx and dp/dy given by (3.8),

dv = fxdx + ¥ydy <3"12)
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is an exact differential. Therefore,

"" L.,{tedx + Zdy)' (3-I3)
where C is a constant. If we choose the path of integration as illustrated in Figure 3,
we obtain

y
y °Mx L

(X, y )

where

c
Fig. 3. Line integral for the pressure

P(*, u) = vM - '(f) + (D Off Jii)- (3'14>

M - 2„ I fg, - (O _ SL ix' <3'15>

r 1 ~3z~ 3 Z)V + Z>V , 2z - 3z2 - Z)Y
J(2) "Jo (1 + DV)3 & ~ 2(1 + DV)2 • (3-17)

4. Pressure variation along the driving surface. Since I{z) and J(z) both vanish
at z = 0, the pressure at a generic point x on the driving surface is p0(x). By setting
y = 0 in the first of equations (3.8), or by differentiating (3.15), we see that p0 obeys
the ordinary differential equation

h3 dp0 _ WD*h 2QD3
2fi dx E2 D — arctan D'

Equation (3.14) can then be rewritten as follows

p(x, y) = Po(x) - Dhp'0(x)j[|) + k[|), (4.2)

where

K(z) = D3J(z) - K(z) = 2(1 +ZDyf [^3(2 - ^ ~ ^3) - 2^(1 + DV)]. (4.3)

Let us consider briefly the special case of D small compared with unity. Since

arctan D = D - D3/3 + D5/5 + 0(Z>7), (4.4)

Eq. (3.6) yields

E2 = (Z)"/3)[l - (7/15)Z)2 + 0(D% (4.5)
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Consequently, with neglect only of terms of the second degree or higher in D, Eq. (4.1)
reduces to

l^-m-20, (4.6)
which is easily recognized as a first integral of the classical Reynolds lubrication equation

£(k' («)

Returning to the case in which D is a finite function of x, we observe that (4.1)
can be considered as a first integral of a second order differential equation, which might
be termed a generalized Reynolds equation. Differentiating (4.1) yields

A (V- dP°) = Will r hdDJL (WD4 _ 2QD3 \
dx \2fi dx ) E2 dx dD \ E2 D — arctan D)'

At first glance, it would appear that the second term on the right side of (4.8) could
be dropped, for it involves h(x)D'(x), which we have assumed negligible. However,
we cannot ignore the cumulative contribution of this term when (4.8) is integrated.
Even though D is a slowly varying function of x, it undergoes large-scale changes over
the breadth of the bearing; typically, D(x) is negative in the inlet region, positive in
the outlet region. The appropriate second order differential equation is obtained by
carrying out the differentiation indicated on the right side of (4.8) and using (4.1)
to eliminate Q:

A. (!lL = w A. (°ih) _l 1 (2D° ~ 3Ei\(h* _ WD4h\ dD
dxWdx) dx\E2 ) D \ D3 — E, /\2M dx E2 ) dx. ^ '

5. Stress components and boundary conditions. In Newtonian viscous flow, the
stress matrix T is related to the flow variables according to

T = —pi + 2^E, (5.1)
where I is the unit matrix and E is the strain-rate matrix, defined by

du 1 (du jftA
dx 2 \dy dx)

dv
\dy ' dx/ dy

With the velocity components given by (3.5),

WD
E2h "'\h' ' (D — arctan D)fi2

where the matrix functions E, and E0 are defined by

2DZ D2Z2 - 1

E =
1 (du , dt>\
2 \dy dx)

(5.2)

E - E.(|; D) + ^ , E.(g; d), (5.3)

V ty. 7_ -El — D3Z
D) - (1 + Dizy D2Z2 - 1 -2 DZ

(5.4)

E Q(Z-,D) 2(1 + D2Z2)3

—2DZ(2 - SZ - 2D2Z2 + D2Z3) (1-2Z - 6D2Z2 + 6D2Z3 + D'Z")
(1-2Z - 6D2Z2 + 6D2Z3 + DlZl) 2DZ(2 -3Z - 2D2Z2 + D2Z3) (5.5)
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Using (4.1) to eliminate Q from (5.3), we obtain

E - m [E'(v D) + D'E«(f;D)] ~ kto-e4 4 (5-6>
The stresses in the fluid can now be obtained by substituting (4.2) and (5.6) into

(5.1). Thus,

T(x, y; D) = -p0(x)I + hp'0(x)f(|; I)) + (2mT7//i)g(|; Z»), (5.7)

where

F(Z; D) = £>J(Z)I - E0(Z),

G(Z ; £) = (D/^2)[E.(Z) - £tf(Z)I + D3E0(Z)]. (5.8)

In general, the lubrication region constitutes only part of the flow field. The full
hydrodynamical problem should take into account the entire geometry of the region
occupied by the lubricant. In classical lubrication theory, however, one usually assumes
that the bearing terminates at more-or-less well defined end points, beyond which
ambient conditions obtain. Thus, if pa denotes the ambient pressure, it is assumed that

T = — pal at x = x0 , x0 + B, (5.9)

where x0 and x0 + B are the ends of the bearing. Moreover, it is established [1] that
p0(x) is of order (h/B)~2 for small (h/B), so that T(z, y, 0) is adequately represented
by -Po(x)I.

In the more general case considered here, there is no guarantee that boundary
conditions on p0{x) adequately describe the coupling of the lubricating film with the
external environment. There are three difficulties: it may not be possible to specify
precise values of x0 and x„ + B at which ambient conditions are adequately approx-
imated; the deviatoric part of T(x, y; D) may be of the same order as the pressure;
the y-variation of T(x, y; D) may be of the same order as p0(x).

If the bearing surface slope differs appreciably from zero only in the interior of the
film, as illustrated in Fig. 4, there is no problem. At the ends of the bearing, the stress

tensor is adequately represented by —p0(x)l, which can be matched to the ambient
value — paI.

When the region of finite slope occurs near an end of the bearing, it can easily happen
that there is no meaningful way to specify boundary conditions on p0(x). Each case
must be considered individually. Basically, a double limit problem is involved. To
proceed beyond classical theory, we must retain terms in D(x). However, to obtain
boundary conditions on p0(x) we need

h(x)/B* « 1, (5.11)
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where B* is the length over which D(x) differs appreciably from zero. If I)(x) has the
same sign throughout the region (x0, x0 + B*), then

/*xo + B*

h(xo + B*) = J D(x) dx = B*D0 , (5.12)

with the mean value theorem for integrals assuring that D0 = Da(x) for some x in
(x0 , x0 + B*). Hence we cannot simultaneously have D(x) large and h(x)/B* every-
where small.

When the region of finite slope occurs near an end of the bearing, but D(x) changes
sign within this region—as appears to be the case near the trailing edge of a foil bearing
[3]—we may be able to retain terms resulting from the wedge flow and yet obtain bound-
ary conditions. It depends upon the relative magnitudes of D(x) and h(x)/B* for the
problem under consideration.
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