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ON THE SOLUTION OF A TRANSCENDENTAL EQUATION IN
SCATTERING THEORY—PART II*

BY

WILLIAM STREIFER** and RALPH D. KODISf
Brown University

Introduction. The scattering theory of electromagnetic waves by an infinitely
long dielectric cylinder of large radius has been considered by Franz and Beckmann
[1], [2], They found that the computation of the diffraction effects requires the solution
of two characteristic equations in the complex j*-plane. The first equation,

X H?\x) V H?\y) ~ U'

was treated by Streifer and Kodis [3]; the second equation,

g»"(») _ IM = Q (1)
21 I-nr'(x) y J,(y) (1)

will be considered here. The parameters are x = k2a, y = kxa where a is the cylinder
radius, fc2 the outer wave number, and kx the wave number of the cylinder. As in Ref.
[3], y is taken to be less than x so that the refractive index, N = y/x, is less than one.

Solution. The solutions of Eq. (1) will be developed as asymptotic series in x or y,
when both are real and much greater than one, by means of appropriate approximations
for the Bessel and Hankel functions. Since each approximation can be used only within
certain ranges of the parameters v, x, and y, the v-plane must be divided into a number
of regions, as shown in Fig. 1, and suitable expansions developed for each. The circular
regions do not have specific boundaries since their radii are \v ± y\ — 0(y,/s) and
\v — x\ = 0(x1/3).

We consider only the situation in which the circular regions are well separated,
i.e., x — y = 0{x). In that case solutions of Eq. (1) exist only near the solutions of
III1'(x) — 0 and J Jjj) = 0, which lie on the solid curves of Fig. 1 and the real axis
for v < y. Far from these curves and outside the circles both //^'(x) and J,(y) may be
accurately represented by a single exponential function (see the appendix), and the
ratios in (1) are proportional to (v1 — x2)1/2 + 0(1) and {v2 — y2)1/2 + 0(1). After
substitution in (1) it is found that

(v2 - x2)1/2 - («2 - y2)W2 + 0(1) = 0,

which can be put into the form,

x2 — y2 = 0(x).

Since x — y = 0(x), the existence of a root implies that 0(x2) = 0(x), which cannot
be true for sufficiently large x.
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Fig. 1. Regions and roots in the p-plane.

In region 1, where \v — x\ = 0(x1/3) and \v — y\ = 0(y), the appropriate asymptotic
forms substituted into (1) yield

Ai'(—qe~iT/3)

Ai (-ge~iv/3)

and

r> (2a)

r = - e—
dxq

1/2 . vx 4. J_ _ ^2
^ 2(i>2 - y2) 'p

+ R, 2 VN 2,3/2 (l - 25" 2) + 0(X~3)8 (v — y) \ v — y / (2b)

where p and q are defined in the Appendix, Ai(ri) is the Airy function of the first kind,
and Ai'{ri) = dAi{ri)/dri.

The solution of (2a) is found by the methods of Ref. [3], and the resulting formula
for v is:

- - * - **"" (i)'" + + L-» © + •""i» ©'"

- M + eir/3L21(» - m3) (|)2/3 + ei2*/3(L4lM + L43M3 + U-J) (I)"3

+ elw/3L52(^2 — 2/i4 + At8) + (-C'eiM + + -^65M6 + L67/x7) + 0(x~7/3),

(3a)

where

n = (1 - N2)~U2, (3b)
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the coefficients are

2 3 !j   Vo j     Vo   1
10 ~ 60' 30 ~ 1 400 140'

t _ 281 t?q 29t7q t _ vo50 4 536 000 12 600' 21 6'

t   Vo t   13170 /*j \41 360' 43 180' ( ^

3r?o r j?o
40' 52 36'

vl 1 r 23??o 13t _   y° i_ 7
61 q OAA OOA' -^632 800 280' M 2 800 1 120'

21i?o . j _ 5^ 5_
400 "1" 80' 67 112 224'

and ^i('Zo) = 0.
These roots are located in regions 1 and 3, near the solid curve separating 2 and 3.

The solutions vx , of H^\x) = 0 fall on this curve and are given by the first part of
(3a), which does not depend on N. The second part approaches — 1 as N —* 0 so that
v = vx — 1 at this limit. As is shown in Ref. [3], the solution is correct only if

(1 - N2) (§J' > h„|,
i.e. N and ?j0 determine the minimum value of x which may be used in (3a).

In region 4, the same procedure yields

Ai'(g) rAi(q) l2'

where
1/2

2N(x2 — v2) 3 y 1 f>dyq
( 1 A1" i ix i , id„p
\N2 y) + OAr/~2 +

+ 8N(x2 - „2)8/2 (* v2 - x2) + 0(-X 3)8N(x - v2)

The asymptotic roots of this equation are:

" = y + vo (|)1/3 + L10 (?)1/3 + L30 (?) - i50 (?)5/3 + if} + iLai(p + /f) (?)2/3

- i(La0 - LVS" + US*) (~y3 + U^ + 2/54 + /3fi) (?)V3

- i(L01p - US* + US* - L6r/37) (?)2 + 0(y~7/3), (4a)

where
P = (1 /N2 - 1 )"1/2, (4b)
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and the coefficients are given by (3c). The first part of (4a), which does not depend
on N, corresponds to the roots of Jv(y) = 0. These are located on the real v axis with
Re (v) < y. The second part is positive and imaginary.

A different solution of (1) is required in regions 5 and 7 since

2/3

> ho I

is not satisfied there (see [3]). For y > Re (v) > —y and \v — y\ — 0(y), we have for
the first term of (1)

1 wU ' i{x' ~ Y" ~ + 0(°- (5>
The second term may be written

„ ... f i T i k,,2 1
cos W

- v y ~ l» 'mv - y) J
1 K 21 OV

L8 24(y - y) J

sin IF + 0(y-2)\ \ (6a>+ 0(2/-2)|-<[cos IF + {y2 \y/2 u 24(y2 _ y2)}

where

W = (y2 - vy2 - V cos"1 (v/y) - x/4. (6b>

After substitution in (1) it can be shown that

tan IF = U, (7a)

where

[ / 2 2\ 1/2 2/ 2 2\

U = -{i (f^,) + 0 '(*"»>2 2 1 I o/ 2 2\ / 2 2\ 3/2y - v J 2(x - v)(y - v)
2 2X - y

I / 2 2\3/(y - v)
i

8 24(f - 2/) J + 0(*-2) . (7b)

Equations (7a) and (7b) can be solved by iteration after rewriting the former as:

W = tan U = mr + - - jj + ^ ? + ■ • • . (8)

First, the zero-order solution is found graphically (see Fig. 2) or numerically by solving
the truncated equation

W|F„-a.» = n% + 7r/2, n = 0,1,2, - - • ,

where we have set v0 = a0y + 0(1) in (6b). After a0 has been determined, v0 is sub-
stituted in (7b) to give U = U0 + 0(y~l). Then vy = a0y + + 0(y~') is computed
by a repetition of the procedure. The result is

, .tanh-1 0 , / C7,fi2 (tanlT1 fi)2 \ 1 , _2s ^ s
v = a0y + I -i h j yz o2\  ITrx 2W2} ~i—- + 0(y ), (9a)cos a0 1,(1 — 42 ) cos a0 2(1 — a0) (cos a0) J y
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(I -a|)a - a0cos-' do
3 2

Fig. 2. (1 — ao)1'2 — ao cos-1 a0 vs. ao for the solution of (1 — a;;)1'2 — a0 cos 1 ao = (nir + 3jt/4)/y.

where
/ 1 2 \ 1/2

a-A'(—«"#) • (9b)

tt — (1 — N2) J at, ill > a0 tanh 1 0
(1 — al)3/2 12(1 — o?0N2) 8 24(1 — ao) iV(l — auN2)W2 COS 1 a0J

All the roots given by (9a) are in the upper half v plane. Their imaginary part, tanh-1
12/cos-1 a0, is a monotonically increasing function of ct0 and N. Thus, for fixed N, succes-
sive roots approach the real axis as a0 decreases toward —1. Equation (9a) is no longer
accurate as a0 —» — 1 and another solution must be sought in region 7. Also as N —* 0 the
expressions for U given by (7b), which assumes N = 0(1) ^ 0, is unbounded and (9a)
becomes

V = a„y + 0(y~l).

In this case it is convenient to replace v with — v in equation (1) and to solve

II^'(x) _ JLM =
X H[l\x) V J-V(y) ° (10)

in region 1. Here

J - v(y) = h[H-l(y) + = WTH',l\y) + e'^H^iy))
01/3

p(y, v) {cos vwAi(q) + sin virBi(q) J,

_I . djP i a /cos vrAi'(q) + sin virRi'(q)\
^ J-,{y) 3 ^ p V "q\ cos vwAi(q) + sin vTBi(q) )'
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Substituting this expression and the appropriate formula for xHf'(x)/H™(x) in
equation (10) yields

cos virAi(q) + sin vTrBi(q) _ . .
cos inrAi'(q) + sin vizBi'(q) ~ * ( }

where

<t> = -id,q {(p " ^) + ^ ~jy + i^f+ 0(X"2)} * (llb)

Since |<£| is small when N is small, it is reasonable to begin by expanding numerator
and denominator of (11a) about v = va where

cos v0TrAi[q(v0)] + sin v0TcBi[q{v^}] = 0. (12)

This process is greatly simplified by defining the functions

A(y) = cos virAi(q) + sin virBi(q), B(v) = cos virAi'(q) + sin virBi'(q),

C(v) = — sin vrAi(q) + cos virBi(q), D(y) = —sin wAi'(q) + cos virBi'(q).

Then equations (11a) and (12) become respectively

A(y) = 4>B(v) (13)
and

A(y o) = 0. (14)
Expanding A(v) and B(v) in Taylor series about v — v0 and simplifying the derivatives,
we obtain

A(v) = (tCo + B0qj5v + 2irD0qVa ̂  - t3C0 + 0{y~i/3) (15a)

and

B(y) = B0 + ttDoSv - tt'Bo + Oiy-1), (15b)

where 8v = v — v0 , q,0 — d„q |0, and the subscript denotes evaluation at v = v0 . Now
if 8v has an asymptotic expansion of the form

a0<t> + a,i4>2 + a2<t>3 + 0(y 4/3),

where <£ = 0(y~1/3), then a0 , , and a2 can be computed by equating the coefficients
of equal orders in (13). Thus

v = v0 + ia o
• (± *Tr1/2 /?Y3ia° W* y2) \y)

-i&-r+4-Lj.-r(r
<*»-* (f - ?r+1'- (s> - $

where
+ T (f " $)" °° Q1 - ?)"" © + (16a>

a0 = (16b)
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The quantities B0 , C0 , and D0 are found in terms of Ai(q0) and Ai'(qa) by means of
the Wronskian relation

Ai(q)Bi'(q) - Ai'(q)Bi(q) = -
7r

and equation (14). The important results are

Do _ Ai'(q0) _ sin 2v„ir
C0 Ai(q0) 27r[^'(g0)]2'

a0 —
Sin Vcjir

_TAi(q0) T--cos V0T

.wBi(q0) _

Since a0 is negative for all real v0 , the solutions of equation (10) described by (16a)
have negative imaginary parts and those of (1) have positive imaginary parts. We
note that Im (v) = 0(y~1/3) here, where previously it was 0(1).

In order to obtain numerical values for v0, equation (12) is rewritten, for cos v0t ^ 0
and Bi(q0) ^ 0 as

Ai(o)
. + tan voir = tan x(go) + tan v0t = 0.

iji(qo)

This implies tan [x(?o) + v0t] = 0 or

"ot + x(Qo) = nt n = ± 0, 1, 2 • • • . (17)

The function x(3o) is tabulated in Ref. [5], and the left side of (17) may be plotted
as a function of v0 to obtain numerical solutions. Such a plot is given in Fig. 3 for y = 16.

This result ceases to be accurate when \v0 + y\ = 0(y) because the series for q diverges.
For this case with Re (v) < — y, Eq. (1) becomes (see the Appendix)

ff fSf + W"), (18a)
where

KoA(y) = 2 ± cot vt exp (~2Z)[1 + 0(y~1)], (18b)

Z = -(,2 - y2)1/2 - , cosh"1 (- v/y), (18c)

and the lower sign in (18b) refers to K^v). As v varies from —y to — «> along the negative
real axis, the right hand side of (18a) changes in the fourth quadrant from —i co to +1,
approaching +1 from below as shown in Fig. 4. Since Z is a large positive monotonically
increasing function of — v in this range, exp (—2Z) is exceedingly small. Thus for (18a)
to be an equality v must be near solutions of (cot vir)'1 = 0, i.e., the negative real integers.
Setting vt — mr + S, |5| « 1 we obtain

Kp(y) . . 1 + e'27(2S)
KM ~ 1 _ e_2Z/(2S)

and the equality of (18a) requires

|5| - 0[exp ( — 2Z)] and Im (5) > 0.

The detailed calculation of S is unnecessary.
Numerical results computed from equations (4a), (9a), and the negative of (16a)

are plotted in Fig. 5 for y = 16. The roots with Re (v) ^ 11.5 and Re (v) —13.5
illustrate the close agreement between the alternate representations in the regions where
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Fig. 3. y0x + x(?o) vs. v0 for y = 16.

they overlap. These coincident solutions determine the regions where the various
formulae apply.

It remains to compute the roots in the lower half plane. Since these correspond to
the solutions of H'vl)(x) = 0, we examine the substitution 2Jv(y) ~ II'„2)(y), which
applies for Im (v) < — 1 (see the Appendix). Then (1) becomes

_ HTM - Q fl9)X H?\x) V H[2\y) - u' (1Jj

which was treated in Ref. [3]. The roots in region 10 are therefore given by the negative of

i t/3 M1/3 (AU3 , T (A, irnT W*
v — x ~ rj0e ) + e Ll0 + L30 l-l + e L50

+ M - ei*/3L21(n - m3) (f)2/3 - ei2T/\L^ + L4sM3 + (^j'*

c\\ 5/3 / o
* \ / r it 3 i t 5 i t 7\ I 4+ e" — 2/j. + m — (Lein + Le3n -f LssM5 + + 0(x 7/3),

(20)
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<v—y

Fig. 4. The locus of —(c2 — y2)'112 x(Hl1)'(x)/Hl1\x)) for — < v < — y.

12.0 16.0
Re(f)

Fig. 5. Roots of x{H<„l)'{x)/H{yl\x)) - y{J'v{y)/Jv{y)) = 0 for y = 16, N = y/x.

where the abbreviations of (3b) and (3c) have been employed. Since the imaginary
part of (20) for the smallest value of |j?0| is approximately —2(x/2)1/3, the use of equa-
tion (19) in lieu of (1) is justified. Plots of equation (20) are given in Ref. [3].

Appendix—Asymptotic Properties op Jv(y)

The requked properties of the Bessel and Hankel functions are discussed by Franz
and Beckmann [4] and Schobe [6], while the Airy functions are considered by Miller
[5]. Reference [3] contains a summary of their results.
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Fig. 6. Regions in the i<-plane for Jv(y).

Franz and Beckmann have shown that the solutions of (j/) = 0 for real y lie
in the first and third quadrants of the v-plane on curves symmetric through the origin.
The curve in the first quadrant is approximately given by

Im [(y2 - vyn - v cos"1 (y/y)] = 0,

which is the solid curve separating regions 2 and 3 in Fig. 1. The asymptotic formula
for H?\x) is a continuous function of v so long as these curves are not crossed. The
same is true of H(2)(y), whose zeros lie on the corresponding curves in the second and
fourth quadrants. The roots of J,(y) = 0 fall on the real v axis with v < y. Except
for this line, the asymptotic formula for Jv(y) is a continuous function of v. The asymp-
totic formulas for Jr(y) are most conveniently expressed by dividing the v plane into
regions as shown in Fig. 6.

The asymptotic form in region III for \v — y\ = 0(y) is

r (v\ _ fo exp [Q2 - ?/)'/2 - v cosh"1 (y/y)}
"AV) — / 2

(" - y)

i + 1
24 (j< - /) J

+ 0(y ) r, (A-l)/ 2 2\1 /
(" - y)

where

|arg (/ — y2)| < t/2, Re [cosh-1 (v/y)] >0, |Im [cosh-1 (v/y)]\ < 7r/2.

In all the other regions the use of J,(y) = 2 [H j,1 -1 (y) + //^2> (?/)] yields the correct results.
For regions I and II near the real axis with \v ± y\ = 0(y), we have

J'(y) ~ 0 (y2 -v2)Wi {C0S W + (y2 -v2)w2 [J 24(/- 2\V )-
sin W + 0(y~2)j,

(A-2a)
where

W = (y2 — V2)U2 - V cos"1 {v/y) - t/4, (A-2b)

|arg (y2 — v2)1/2\ < 7t/2 0 < Re [cos-1 (v/y)] < x.

The exponential contributed by H(y) becomes dominant in region I, while in region II,
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Hl2)(y) is dominant. Thus far from the real axis we have

51,2 1 + 0(y~2)), (A-3)/q \-l/2

Jy(y) = / 2 X 2X1/4 exp (± iTF) jl T 2^1/2
8 24(j>2 - /)./ 2 2\l/4 HI ; 1 I / 2 2\ 1

(y — v) { iy — V)

where the upper signs refer to region I.

In regions IV and V near the real v axis with \v + y\ = 0(y) we have

J v{y) = h[H?\y) + #2>(2/)] = Ue~ivrHL\\y) + e^H^(y)]

= -(J2-yy" {2sin- exP W [l - (/ _\r" (I - 24(/- ,/)) + 0(^2).

— cos w exp (—Z)[l + 0(2/~')]| (A-4a)

where
£ = -(/ - yy2 - „ cosh"1 (- v/y), (A-4b)

and
|arg (e2 - 7/)1/2| < tt/2, lie [cosh-1 (-v/y)] > 0, |Im [cosh-1 {-v/y)]| < tt/2.

Here the very small exponential term exp (-Z), which is only important at the solutions
of sin vir = 0, has been included. At points other than the negative integers, exp (-Z)
is ignored and H^i\{y) ~ or

|H?\y)/H?\y)\ = |exp (~2«V)| = exp [2tt Im (,)].
Thus in region IV

JM ~ w:\y)
and in region V

J.(y) ~ W?\y).
When \v — y\ = 0(y1/3) we have [6]

J.(y)

where

= i^j'3 P(y, v)Ai[q{y, v)] + 0[z/-2/3<m+1)], (A-5)

P(y, v) = E(-l)'Pf© (I)2''3, (A-6a)
J=0 M/'

m / c\\2k/Z

Q(.y,v) = K-DU© - (A-6b)
/c = 0 M//

P0(9 = l, Qo(£) = S.

P,(S)-i{, 0,(0

= 1 260 * ' = 1 575 * + 140'

P ^3 I 1 Q /£\ _ ^1 I ^ tsW 56 700 * 900' 283 500 * 1 575
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When \v + y\ = 0(yw:s) relationships such as J,(y) = \[e~"xH
will permit the use of formulae which apply for \v — y\ = 0(y1/s).
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