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ON THE SCATTERING OF ELECTROMAGNETIC WAVES
BY A DIELECTRIC CYLINDER*

BY

WILLIAM STREIFER** AND RALPH D. KODISf
Brown University, Providence, R.I.

Abstract. The scattering of ^-polarized cylindrical electromagnetic waves by an in-
finitely long dielectric cylinder is investigated. For small incident wavelength the slowly
converging series solution is converted to a sum of integrals. An expansion is performed
so that the integrals may be divided into two classes depending on the relative locations
of source and observation points. Those in the first class have points of stationary phase
and an asymptotic evaluation gives contributions which are identified as those of geo-
metric optics. The remaining integrals are evaluated as residue sums. A plot of normalized
back-scattering cross section vs. normalized radius for n = .4 is given.

Introduction. The scattering of electromagnetic waves by an infinite dielectric
cylinder of large radius has been treated by Beckmann and Franz [1], [2] among others.
They employ the Watson transformation to convert the slowly convergent series solution
into a sum of integrals, some of which are evaluated by the method of stationary phase
and yield geometric optics terms. The remainder are transformed to residue sums and
interpreted as diffraction effects. The pole locations they use in evaluating these residues
are only qualitatively determined.

In the following the authors employ the Poisson sum formula as suggested by Wu [3]
to obtain integrals similar to those found by Beckmann and Franz. However, the present
work is an extension of theirs in three respects: (1), more precise pole locations are used
in the residue computation; (2), the refractive index of the cylinder is taken to be less
than one; and (3), numerical results are included.

Formulation. If an electromagnetic wave emanates from an infinite fine source
with its electric vector parallel to the axis of an infinite dielectric cylinder, the governing
equation in the coordinate system illustrated in Fig. 1 is

[V?, + k\r)]G(i, r') = — 5(r — r'), (1)

where k(r) equals fci for r < a and fc2 for r > a; fci and k2 are real. The function G(r, r'),
together with its derivative drG(r, r'), is continuous at the cylinder surface r = |r| = a
and satisfies the radiation condition

lim [r1/3(ar - ik2)G] = 0.

The solution of (1) in r > a, found by separation of variables, is

G(t, r') = (i/8) £ {TI{nl\k2r')H<:\k2r)
n = — oo

  + Hl1\k2r>)Hll\k2r)[Hi2\x)/Hl1\x)-\R{n)\ exp (mfl), (2a)
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x = k2a
N = y/x

Fig. 1. Regions for observation points.

where

R(n) = -CM/CM), (2b)
Cll2(n) = xHlVA2y(x)/HlVA2\x) - yJ'M/Jn(y),

(the superscript (1) refers to CO and

x = k2a, y - kid.

The line source may be at either the primed or unprimed point, provided r' > r.
For large cylinders, i.e. x, y 1, the series (2a) converges very slowly, and it is

convenient to employ the Poisson sum formula [3] to obtain
+ oo /» + co

(?(r,r') = (i/8) E f " {H?\k2r')H?\k2r)
m=* — co J — com — — co «/—oo

+ H?\k2r')Hl1\k2r)[H?\x)/Hll\x)\R(y)} exp [w(6 + 2ttm)] dv. (3)

When Debye's asymptotic forms for the Hankel and Bessel functions [4] are substituted
in (3) it is evident that for 0 < d < ir every integral with m > 0 has many stationary
phase points. These contributions may be separated by expanding R(v) (see Appendix A):

R(y) = R1(v) + (1 + 50(1 + R2) £ RVW-:\y)/Hl2\y)Y, (4)
?>=» +1

where

RW) = -[I«]-1f^2M1)'(*'u>(i) - yH(2)'W\y)/Hl,2)'(1)(y)},

(the superscript (2) refers to Z?0 and

L(y) = xHl»\x)/Hll\x) - yH™ \y)/H?\y).
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Substituting (4) in (3), interchanging summation and integration, and carrying out
various algebraic manipulations, we obtain:

(8/i)G(r, r') = £ f" (k2r)
m = — co J — co

+ Hl1\kr)Hl1\k2r)[Hl2\x)/H?\x)]R(v)} exp [iv(6 + 2ttto)] (5a)

+ £ f" {Hi1\k2r')H(y2)(k2r)
m — + l J-co

+ ffJ1>(fc2r')Fi1>(*!,r)[Hia>(®)/jffJ1>(®)]«(-i')} exp \iv{6 + 2tto)] dv (5b)

+ 11 f " {#" (fe4r W%r)\H™(x)/H™(*)]
j> = + 1 m = + l J — co

• (i + Boa + £2)flr1[^l)(2/)/ff:2>(</)r eXp [»(* + 2™)] & (5c)

+ J+ {H^\k2r')H^\k2r) + H?\k2r')H?\k2r)[H?\x)/H',1\x)-\R1(y)} exp (ivd) dv (5d)

+ £ f "
p=» + 1 v — co

■ (1 + R0(1 + R2)Rr1LHl1\y)/Hi,2\y)Y exp (ivd) dv (5e)

^ f+" H^jkrWihr) exp (ivd) dv ....
(8/7r;i.„ [Hl1\x)TH™{y)J^{y)L{v)CA-v)' (5fJ

Each of the integrals (5a)-(5f) which has a stationary phase point yields a character-
istic ray of geometric optics. Some of these rays can reach only a restricted region which
depends upon the relative position of source and observation points. With the index
of refraction N = y/x < 1 and the observation point at r < r', three regions can be
distinguished (see Fig. 1).

Region 1. In this, the "shadow" region, it is convenient to rewrite G(r, r') in the
form:

G(r, r') = (»/8) £ {Hil\k2r')H?\k2r)
m = — co J—com = — co v— co

+ Hl1\k2r')Hl1\k2r)[Hl2)(x)/Hi,1\x)]R(v)} exp [w(0 + 2xto)] dv (6a)

+ (V8) £ f " {H(yl\k2r')H?\k2r)
to™0 ^-co

+ H?\k2r')H?\k2r)[H\2\x)/Hl1\x)]R{-v)} exp [iv(6 + 2ttto)] ^ (6b)

+ (»/8) £ £ f" +50(1 +B,)
p= +1 m —0 — <-°

exp [»(* + 27rm)] <&, (6c)

where (5e) and (5c) as well as (5d), (5f), and (5b) have been combined.
The denominator of (6c) contains the factor H™ (y)H™ (y) which increases expo-

nentially when v > y. The principal contribution of those integrals therefore occurs in
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the range {—y, y). Substitution of the Debye asymptotic forms in this interval yields

7 tA w rw ^ /»-. f+A (! + RiXl + + Q(y-1) 1 , ,n s
' exp [iir(p i)/2] J_A {[(k2r')2 - v2][(k2r)2 - v2]}Wi ' ^

where

0 < y - A = 0(t/),
/ 2 2\ 1/2 / 2 2\l/2

P E> (X ~ " ) ~ ^ ~ " ) /7M
~ it2 ~ ^2 _ y2y/2 _|_ £ 2 _ ^1/2* (,'D,)

The phase of the integrand is

0 = Khr'f ~ f2]1/2 + [(k2r)2 - »2],/2 - 2(x2 - v2)U2 + 2p(y2 - v2)xn

+ v{ — cos-1 (y/k2r') — cos-1 (y/k2r) + 2 cos-1 (y/x) — 2p cos-1 (v/y) + 9 + 2irm\, (7c)

where the inverse cosine functions are bounded by 0 and r. If v„ is a point of stationary
phase, the condition d<d/dv | „„ = 0 leads to

cos-1 (;vjk2r') + cos-1 (vjk2r) — 2 cos-1 (yjx) + 2p cos-1 (vjy) = 9 + 2xm. (8)

This equation does not have solutions for all values of to and p. For a fixed value of p,
for example, the left side of (8) has a maximum in (—A, A) which always occurs at

= —A. As A approaches y this maximum value approaches 2irp — U, where

U = cos-1 (y/k2r') + cos-1 (y/k2r) — 2 cos-1 N.

On the other hand, at v„ = A the value is minimum and approaches U as A approaches
y. Since the right hand side of (8) must be within these limits, the possible values of to
satisfy

2irp — (U -f- 6) > 2irm > U — 9.

But to is an integer, and ir> U > 0, x > 0 > 0 so that

p — 1 > to > 1.
It is clear that for m = 0, (8) has a solution only when 9 > U. The equation of the line
separating regions 2 and 3 is 6 = U (see Fig. 1).

The stationary phase evaluation of (7a) yields

J (2/Ty/2g+Rjq+RJ(-R2uy-1 exp {t>/4+(p-l)x/21} exp (iejtl+QQy-1)!
vm~ ! [(k2r')2—vl][(k2r)2—vl]} 1/4£)1/2

(9a)

D = 2p(y2 - vlr1/2 - 2(x2 - + [(fc2r')2 - vVTW + [<M* - ^",/2, (9b)

where the subscript n denotes evaluation at v„ , and in particular

©, = k2{[r>2 - (yJkW2 + [r2 - (yjk2)j/2

- 2[a2 - (yjk2)2]1/2} + 2pk1[a2 - (yjk^2}. (10)

The physical interpretation of these results as the rays of geometric optics is given
in [1]. We note briefly that the function multiplying k2 in (10) is the distance the
ray travels outside the cylinder, while the multiplicand of fci corresponds to the p equal
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paths the ray traverses inside. Thus the rays undergo p — 1 internal reflections as is
borne out by the factor Rl'1, since the quantities R^ , 7?2„ , (1 + and (1 + R2„)
are the Fresnel reflection and transmission coefficients. Furthermore when m < p/2
the ray encircles the origin m times in a counterclockwise direction, while for m > p/2,
the clockwise encirclements are given by p — m. The localization principle [5] as well
as Snell's law are verified by the interpretation of vjk as the distance from the ray to
the origin, where k — k2 for the external ray and fcj for the internal. If a,- and ar are
respectively the angles of incidence and refraction we have

sin a,- — vjk2 , sin a, = vjkx ,

so that

sin a,/sin ar — kt/k2 = N,

which is Snell's law. These quantities are illustrated in Fig. 2.

i- —IVz r —.'/a
-p-d^/kg)2]- p-C^/ka)2]

Fig. 2. A refracted ray, p — 2, m = 1.

The integrals in (6a) and (6b) do not have stationary points in region 1; they are
evaluated as residue sums. Only the lower half plane solutions of Ci (y) — 0 are used to
locate the poles of R(v) since with to < 0 the integrals (6a) require that the contour
be closed below the axis. The pole locations v = —vi, as computed in [6] are shown in
Fig. 3. The integrals in (6b) are similarly evaluated at the poles of R(—v) in the upper
half plane, i.e. at v = vi . Thus (6a) is equal to

* E £
m = — co v i

exp [-zV(0 + 2ttto)]
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v Plane

y increasing
toward x

x decreasing
toward y

-y v-vx

y increasing
toward x

Fig. 3. Roots of xH,w (x)/ff,«>(x) - y J,'{y)/Jt{y) = 0.

after employing the Wronskian relation. Under the conditions v, — x = 0(x1/3) and
vi — y = 0(y), the asymptotic form of this residue sum is

y* y (2tt)~1(x/2)2/3 exp - v(0 + 2ttto)]}[1 + Q(x~1)]  , ,
^ if {[(fc/)2 - ,2][(fc2r)2 - v2]}Wi{p(.x, v)Ai[— q exp (-»,/;3)]}2 SAWI-,, ' U '

where

a.Cjl,..,, = — (v? — y2)/x + 4(v? — y2)^, — x)/15z2 + 2(v( — x) + 0(1),

= Mb"' - (,/ft2)2]1/2 + [r2 - (x/fc2)2]1/2} - .[cos"1 (v/k2r') + cos'1 (y/k2r)},

p{x, v) and q are the Schobe polynomials [4], and Ai(j) is the Airy function of the first
kind. Similarly (6b) becomes

y1 Y1 (2a-) '(:r/2)2/3 exp {i[^l + v(0 + 2%m)\)\\ + 0(x *)]   . .
if {[{k/f - v2][(k2rf - ,2]j1/4{p(x, v)Ai[-q exp (-ix/3)]}2 d.C^-v)

where the derivative is given by (lib).
The terms (11a) and (12) represent the well-known creeping waves [1], which radiate

tangentially as they propagate around the cylinder. The exponential decay depends
on the product of the angle and Im (vt). Thus the only important contributions are
from the first encirclement, i.e. m = 0 and to = — 1. Physically, the waves have radiated
away so much energy in their first encirclement that their next contribution is negligible.
The localization principle can be applied to these waves also since vt x for the counter-
clockwise waves which are associated with rays striking the cylinder tangentially in
6 > 0; for the clockwise waves, —vt and the tangential rays are incident in
6 < 0. The geometric model is illustrated in Fig. 4.



1064] SCATTERING OF ELECTROMAGNETIC WAVES 199

For 6 = t, the terms in (11a) and (12) are identical since the geometry is symmetric
about 0 = 0, t. Further, the residue sum for m = 0 does not converge when

cos-1 (x/k2r) + cos-1 (x/k2r') = 6,

which defines the common boundary of regions 1 and 2. Here the observation point
moves into the region of direct illumination, and the integral with m = 0 gives optical
rays.

Region 2. In region 2 it is convenient to rewrite the integral in (6&) with m = 0 as,

{%/8) f+J {H[l\k2r')H[2\k2r)

+ H?\k2r')H?\k2r)[H?\x)/H?\x)]R1(y)} exp (ivd) dv (13a)

n , * r" exp (ivd) dv
{ /T J L. [H?\x)}2H™{y)J_r(y)Hv)C1(-v) (13b)

The first of these integrals (13a) is evaluated by the stationary phase technique.
We obtain in part

mWtr, u + 0[(|w.n)i
which is just the first term in the asymptotic series for (i/4)^u(k2 [r — r'|), the free

a(0-cos"'a/rl -cos"a/r)'

(a)

a(27T-cos"'a/rl -cos~'{i/r-9)

Vr'z-az-

(b)
Fig. 4. Creeping waves.
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space Green's function or equivalently the direct ray. In addition (13a) yields the singly
reflected ray

Rllt exp [i(0„ + tt/4)][1 + Ojx'1)]
2(2t)1/2{[(fc/)2 - vl][(hrf - v2„]} l/iW1/2 '

where

©, = k2{[r'2 - iyJW + [r2 - {vJkW2 - 2[a - (yjk2)2])t

W = 2(x2 - vlr1/2 - [ik2r'f - uTU2 ~ [(k2r)2 - y2]"1/a,

Ri> = [(x2 - x2),/2 - (?/ - «v)1/2]/[(*a - vy/2 + (y2 - "2)1/2]»

(y2 ~ vT2 = -i(?l - y2)U2,

and is the solution of

cos-1 (vjk2r') + cos-1 (vjk2r) — 2 cos-1 (vjx) = 0.

Here we have neglected the phase contributed by Ri(y) for v > y since it is of a lower
order than that given by the Hankel functions.

The integral (13b) is evaluated as a residue sum at the poles of the integrand in
the upper half plane. These are the solutions of L(y) = 0,

xH?\x)/H?\x) - yHin'(]/)/Hln(y) = 0, (14a)

as well as the solutions of Ci(—v) = 0,

xH?\x)/H?\x) - yJL,(y)/J-Xy) = 0. (14b)
The solutions of (14b) in the upper hah plane are , while those of (14a) are vt and v,
(see Fig. 5). Thus it appears that double poles exist at vt ; however, an examination of
equations (14a) and (14b) shows that these solutions are not exactly coincident and in fact
depend on 2J-„(y) ~ Hi2„' (y) in this part of the v-plane. By writing v[ for the roots of
(14a) and v" for those of (14b) we show in Appendix B that the total residue at vl is
negligible.

Thus (13b) is equal to
. y-1 {k2r')H[l\k2r) exp (ivd)
1 £ [H^WfldL/dv],.

which becomes after substitution of the asymptotic forms

(s2 - v2)2 l1/4 exp [t(*, + „fl)1[l + Ojx'1)]■ yp J yx — v ) i exp i-iy\y2 ~r f )\ . .
if \[(k2r')2 - v2][{k2rf - ,2]j [dL/M.. ' ( '

where

^ = k2{[r'2 - {WW2 + [r2 - (.'MU2 - 2[a2 - WW'2}

— p[cos_1 (v/k2r') + cos-1 (y/k2r) — 2 cos-1 (v/x)], (15b)

dL/dv|,, ~ — (x2 — v])/y + 4(x' — v2,)(v, — y)/l5y2 + 2{v, — y) + 0(1) = 0(x). (15c)

It is possible to interpret formula (15a) in terms of ray optics, but not as clearly as
in the creeping wave situation. Since vs « —y + i Im (y,) where Im (?„) > 0, the local-
ization principle relates these terms to the rays which strike the cylinder at the angle
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v Plane

y increasing
toward x

x decreasing
toward y

Fig. 5. Roots of xfl,&>'(»)/£, 0>(®) — yHlfm'{y)/H,m{y) = 0 in the right half plane.

of total reflection above the line 0 = 0. The first phase term in (15b) is the product of
fc2 and a distance consistent with the above interpretation (see Fig. 6). The second phase
term

—w„[cos_l (iv,/k2r') + cos-1 (v./k^r) — 2 cos-1 (y,/x) — 6]

is approximately equal to

iv,[6 + cos-1 (Na/r') + cos-1 (Na/r) — 2 cos-1 N],

which is iv, multiplying the angle 0 shown in Fig. 6. Thus this part of the phase represents
a wave traveling counterclockwise around the cylinder with propagation constant v, .

-(Nar
»0+cos"lNa/r, + cos"'Na/r-2cos"1 N

Fig. 6. Physical interpretation of residues, equation (15a).
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Since Im (?,) > 0, the exponential in (15a) has a negative real part and the wave decays
in proportion to the angle; however, the Re (v,) is negative and so the physical interpre-
tation is not completely satisfactory.

Region 3. The results derived above for (13a) and (13b) are applicable to observa-
tion points in region 3. The integrals (5e), however, as was mentioned in connection
with Eq. (8), have no stationary phase points in region 3. After summation (5e) is
equal to

2 r- g:»(fc2r')ff:i)(fcar) exp jivd) dv
( /7F J J-- [Bl1>(?)]2Hl'}(y)J.(l/)L(»)ClO>) '

which is evaluated by residues.
For 6 > 0, the contour may only be closed by an infinite semicircle in the upper half

plane. The four residue series obtained from the poles vt , v,, va, and vT (see Figs. 3 and 5)
converge so slowly that one could as well employ the series solution (2a). It is possible,
however, to approximate (16) by deforming the path of integration as shown in Fig. 7.

k2r' -k2r

Fig. 7. Deformed path of integration.

The integral over the new path is neglected compared to the residues at the captured
poles, —v, , (see Appendix C). We note that the residues at the captured poles, —vt ,
are negligible as shown in Appendix B. Thus (16) is approximately equal to

. v / Qr2 - V2)2 \1/4 exp m2 - ,9)1 [1 + Ojx-1)] „
r ICfeO2 - "2][(M2 - v2}) [dL/dv],. ' (17;

where the summation includes only captured poles and \p2 and the derivative are given
by (15b) and (15c) respectively. In region 3 the inequality

cos-1 (Na/r') + cos-1 (Na/r) — 2 cos-1 (N) > 6 (18)

is satisfied and successive terms in (17) have decreasing magnitudes.
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The form of (17) is the same as (15a) with the sign of 6 reversed; indeed for 6 = 0
the integrals (16) and (13b) are identical. The physical interpretation of the residues
at v, and — v, is similar except that the former are associated with rays incident in 6 > 0.

Plane waves and back-scattering. To specialize the above results to the case of an
incident plane wave of unit amplitude, one simply applies the operator

lim {— 4z(7rfc2r'/2)1/2 exp [i(ir/4 — k2r'J]}
r'—>co

to the previous results. We choose here to consider the case of back-scattering since
the other case of chief interest, the scattering cross section, cannot be completely treated
by the methods developed above.

The normalized back-scattering cross section is defined by

= |lim (2r/ay/2Es(e = 0)|2 = \ER\\
r—»co

where Es is the scattered field, and

Er = [(1 - N)/(l + N)] exp (-2ix) + £ £ (1 + flj(l + R2X-R2,r\cos a;)I/2
p= + 2 m«= +1

• [(p cos <x.i/N cos ar) — 1]_1/2 exp [—2ix(l — pN cosar/cos a,) + i(p — l)x/2] (19a)

4(z/2)2/3 exp [ivi(2m — l)x + iw/4]
- y2){p(x, vt)Ai[— q(x, vi) exp (—iir/c

— 8(x/2)1/2y(x2 — v2,)~1/2 exp {—2i(x2 — v2,)1/2 — iv,[ir — 2 cos-1 iyjx)] — it/4}, (19c)

, V- V 4^/z; exp yivi^zm - i)v -|- tr/4]  , ,.
* rk, tr ("? - y2){v{x, vi)Ai[—q(x, Vl) exp (-»t/3)]}2 UyDj

Fig. 8. Normalized back-scattering cross section vs. x.
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with cos a,- = (1 — v'Jx2) and cos ar = (1 — v2Jy2). The calculation of <rB was pro-
grammed for the IBM 7070 of the Brown University Computing Center. The geometric
optics terms in (19a) required the iterative solution of sin a{ = N sin ar and ar =
[a< — ir(p/2 — m)]/p. The creeping wave terms represented by (19b) were found to be
negligible and only (19c) contributed to the diffraction effect. Figure 8 is a plot of a„ vs.
k2a for N = .4.

The results developed here do not apply to observation points near 6 = ir and the
boundaries separating regions 1, 2 and 3 since these lines are caustics. Thus the forward
scatter with an incident plane wave has not been completely determined and the scat-
tering cross section cannot be calculated.

Appendix A

The power series (4a)

R(y) = RM + (1 + Bi)(l + R*) £ RTWM/Hrm'
p = + l

converges by the ratio test when

|R2H?\y)/H™(y)\ < 1.

On the real v axis this condition becomes \R2\ < 1 or R2R* < 1. We write

R2 = — (D - NE)/(D - NE*),
so that

p p* - |D|2 + N2 \E\2 - N(ED* + DE*)k2u, - jD|2 + N2 |^|2 _ N(E*D* + DEy ^A-lj

We have however,

ED* + DE* - (.E*D* + DE) = -(£> - D*){E - E*), (A-2)
where

D - D* = H™\z)/H™(x) - H?y{x)/H?\x) = (U/ttx) ^"(s)!"*
and

E — E* = (4i/ry) \H?\y)\~2,

so that (A-2) is positive definite. This implies that (A-l) is less than unity and the series
converges.

Appendix B

At the solutions of (14a), v[, the residue calculation gives for the denominator of (13b)

H^MJ-MC^-v^dL/dv^. = -(2i/7r)[dL/dv],t. ,

where the Wronskian relation has been employed. Similarly at the solution of (14b),
v[' , we have
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Adding the two residues and setting v[ = v[' = vt , the result is

{(iry/2l)[dC2(—v)/dv~\)/{(dL/dv^dCti—v)/dv\}

d{[Hi2\y)]~2 exp (2iriv)}/dv 2x2 cosh-1 (yi/y) exp (2«V;)
~ ~ {dL/dvf ~ (A - y2)[Hl2\y)]2

which is very small since Im (vt) > 0 and H™(y) increases as an exponential func-
tion of vi .

The residues of (16) at —vt yield the same result, as substitution of — v for v will show.

Appendix C

On those parts of the path shown in Fig. 7, which coincide with the real axis, the
integrand of (16)

H?\k2r')H(:\k2r) exp (ive)/[H?\x)]2H?\y)Jr(y)L(?)C1(y) (C-l)

has an exponential variation given by

H?\k2r')H?\k2r) exp (iv6)/[H[l\x)}1. (C-2)

When |e| > x and \v\ — x = 0(x), (C-2) is very small and decreases rapidly with in-
creasing |j>|.

The exponential variation of (C-l) on the circular part of the path changes from
(C-2) on the arc PQ to

Hi"(k2r')H?\k2r) exp (ivd)/[H[x) (*)] W(y)]2 (C-3)

on the arc QRS (see Fig. 7). Since (C-2) is symmetric about the imaginary axis and
[Hi2)(y)]~2 is very small in the third quadrant, the maximum value of (C-l) occurs
on the arc PQR. Along PQR, (C-2) increases from

exp [2(v2 — x2)1/2 — 2v cosh-1 (y/x)~\

at P, to exp (ivd) at R. However, (C-3) must be employed at points between Q and R,
and the additional quantity [H(2) (y)]~2 varies exponentially from unity at Q to exp (—ivir)
at R. Thus the integrand (C-l) attains its maximum value in the vicinity of Q.

At Q the exponential variation of (C-l) is

exp {i[(k2r')2 — v2]1/2 + [(k2r)2 — v2~\w2 — 2{x2 — v2)u2

— tV[cos-1 ('v/k2r') + cos-1 (y/k2r) — 2 cos-1 (v/x) + C]}, (C-4)

and the equation of the curve passing through Q is

Im [{y2 - v2Y'2 - v cos-1 {v/y)} = 0. (C-5)

Since a general examination of (C-4) subject to (C-5) is quite complicated, a numeri-
cal example will be considered. Let k2r', k2r = 3.5x, N = y/x = .5, and v = 1.4a:. An
approximate solution of (C-5) yields v = 1.4 x exp ( —iV/4) and (C-4) is approximately
equal to exp x(—1.27 + 6). From (18), which defines region 3, we obtain 6 < .76 radians
and the integral over the semicircle is negligible compared to the residues.
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