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ON THE TIME DEPENDENCE OF VISCOELASTIC
VARIATIONAL SOLUTIONS*

R. A. SCHAPERY
Purdue University, West Lafayette, Indiana

Abstract. Thermodynamic operational-variational principles are employed in a
study of the transient response of linear viscoelastic media with an arbitrary degree of
anisotropy. Assuming displacements in the form of a series of products of space-de-
pendent functions and time-dependent generalized coordinates, the (approximate)
response is calculated by minimizing a functional which is analogous to the potential
energy of an elastic body. Similarly, a principle analogous to the principle of minimum
complementary energy of elasticity is used to deduce transient behavior of (approximate)
stresses. The displacements are not required to satisfy equilibrium or stress boundary
conditions, nor are stresses calculated from the complementary principle required to
satisfy compatibility or displacement boundary conditions. It is found that when
applied loads and displacements are step-functions of time, the transient component of
stresses and displacements is given in most cases by a series of exponentials with nega-
tive, real arguments.

1. Introduction. In a recent paper [1] variational principles in linear thermo-
viscoelasticity were deduced from Biot's thermodynamic theory [2], Anticipating various
applications, these principles were stated using convolution-type functionals expressed
in terms of several different combinations of mechanical displacements, entropy dis-
placements (defined as the heat flow vector divided by a reference temperature), stresses,
and temperature. Special cases of these general principles are Biot's operational-varia-
tional principles for mechanical displacements and/or entropy displacements in iso-
thermal viscoelasticity [3] and thermoelasticity [4], and Gurtin's [5] convolution principles
for mechanical displacements and/or stresses in isothermal viscoelasticity.

Assuming zero initial conditions, all of the convolution functionals [1, 5] have the
characteristic form

1= f 1*g> dv + f FWtdA,
Jv J A

where /,■ , g,• , F< , and G, are functions of spacial coordinates and time, integration is
over the time-independent volume V and bounding surface A, the usual tensor notation
is employed in that repetition of the index implies summation over its range, and the
asterisk between two functions is shorthand for convolution integration with respect
to time; e.g.,

1*Qi = [ - t) dr.
Jo
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When we take the Laplace transform of I, viz.

J'(p) = f ) dt,
Jo

an operational form of the functional is obtained, according to the familiar rule for the
transform of convolution products [6],

I'(P) = [ MdV+ [ F'G'i dA,
Jy J A

in which a prime designates the Laplace transform of the function. By making I(t)
stationary with respect to a certain class of variations of the dependent variables,
integro-differential Euler equations and natural boundary conditions for the space-
and time-dependent variables are obtained. On the other hand, by applying the con-
dition for stationary behavior to the operational form I'(p), we obtain the Laplace
transform of these Euler equations and boundary conditions. Principles utilizing I'(p)
are called operational-variational principles.

The purpose of this present report is to derive the form of time dependence of ap-
proximate (or possibly exact) viscoelastic solutions that are obtained by applying the
Ritz method [7] to certain of the transformed functionals. For algebraic simplicity we
have omitted all thermal variables here, and consider only a principle for mechanical
displacements and a complementary principle for stresses. However, the results are
readily extended to the thermoviscoelastic principles in [1] that involve functionals
whose Laplace transform on the positive, real axis of the transform parameter, p, attains
an absolute minimum for the exact solution. The principles in [1] that satisfy this posi-
tive property are the two "homogeneous principles" (one for mechanical and entropy
displacements and one for mechanical stresses and temperature) in which the thermal
variables may or may not be thermodynamically coupled with the mechanical variables,
and two "nonhomogeneous principles" (one in terms of mechanical displacements and
temperature and one in terms of mechanical stresses and entropy displacements) in
which either the mechanical or thermal variables must be prescribed throughout the
body. Minimum principles for isothermal viscoelastic behavior and heat conduction,
for example, are special cases of these four principles.

The following analyses apply to linear media with an arbitrary degree of anisotropy.
Also, it is assumed that all prescribed loads and displacements are step-functions of
time applied at t = 0; generalization can, of course, be accomplished by using super-
position.

2. Displacement response. In this section an operational-variational principle,
which is similar to the well-known principle of minimum potential energy for elastic
bodies [7], will be used to calculate time dependence of the displacement vector field
(wi , u2 , u3) given by the series

iii = fi(x)qa(t) + Ui(x)H(t), (i = 1, 2, 3). (1)
Summation over a(=l, 2, ,2V) is implied, f"(x) are assumed functions of only the
coordinates and vanish on the portion of the boundary Au where displacements
are prescribed, qa(t) are unspecified time-dependent generalized coordinates, and
Ui{x)H(t) is the prescribed displacement vector for which H(t) is the Heaviside step-
function
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H(f) = f0, 1 < °' (2)
U, t > 0.

It is not required that these displacements satisfy equilibrium or stress boundary con-
ditions.

The appropriate displacement functional which is to be minimized for calculation
of the generalized coordinates is [1]

\ [ Zije',eh dV - f F'isu'i dV - f T'^u', dA, (i, j,k, I = 1, 2, 3). (3)
Z Jv Jv JAt

where, as before, repetition of the indices in each product implies summation over their
range. T'iH and F'al are prescribed, transformed forces given by

T'ia = T,(x)/p, F'„ = Ft(x)/p. (4)
A r is the portion of the boundary where forces are prescribed, the e'u are transformed
strains, and the transformed displacement vector is

< = ftql + UJp. (5)
Also, from thermodynamic studies for stable systems [1, 2], the operational moduli
Z'l] are given by

Zkl = Y"  1- Dkl + vD"kl (6)
V v + (1/p.) '

where each matrix in (6) is completely symmetric, real, and positive semi-definite, i.e.

> 0, F)> 0, ^

F)'i'"eifikl > 0, e4,e(i > 0,

but the matrix made up of the sum of those in (6) is positive definite, i.e.

[]£ DT' + D\) + D^l]eiiekl > 0, > 0. (8)
8

Also, the "relaxation times," ps , are real and positive.
We now write I'u as a function of q'a by using the transformed strain-displacement

relations

e'u = Ku'.i + «'.,), (9)
to find

/,i = \ f Zl)y^,q'a + E(i/p)[eBklq', + Ekl/p] dV

- [ [fWa + UM^rdV - f UWa + UJp^dA, (10)
Jr P ->At V

where

e," ^ §(/",• + (11)

E« - WJt.t + Uifi). (12)
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The generalized coordinates are found by minimizing I'u with respect to each q'tt
which leads to the following N linear algebraic equations:

Ca,q'a = m/v\ (13)
in which the following definitions are employed:

m « [ Tf, dA+ f Fifi
J At jV

nkl(s)

c.,-H ^^ftM + D"/p + D"'.e,°e£, dV, (14)

dV

pDk{l,w

V + (1 /p.)
+ D" + piW+ffkl dV. (15)

It is noted that the singularities of (Qp) are simple poles (or branch cuts if p, = p. (a;,))
on the negative real p-axis, but if the boundary conditions are all on stress (Qp) is inde-
pendent of p. Also, from the symmetry of Z" we have Caj3 = C,s„ ■ The operational moduli
in (14) and (15) have been left in the volume integrals since properties may be functions
of Xi . We shall now establish the dependence of q'a on p, and thereby obtain the time
dependence of displacements.

First, the following theorem will be proved:
Theorem I. The singularities of q'a occur only on the nonpositive real p-axis.
The proof will be made by showing that the determinant of Ca$ (denoted by \Cali[)

does not vanish when p is complex or real and positive. Let p = u + iv and substitute
this into (14) to find

C«3 = Rap — ivlae , (16)

where

R m [ [" E lu t + -~rr^2 + dV,
Jv L , [u + (1 /p.)] + V U + V J

r s f r y Mini  , Da L
0"3 Jv L 8 [u + (1/p.)]2 + v2 u2 -f- v2 \

(17)

"4, dV, (18)

and

I Ctl3 — I Pa , RaP — Rpa • (19)

It is noted by reference to equations (6)-(8) that Raj3 is positive definite when u > 0,
but is indefinite when u < 0; also Iaf> is positive semi-definite for all u and v.

Let us assume that |CajS| = 0 and determine the permissible values of u and v. Vanish-
ing of this determinant means that a non-trivial (real or complex) solution ya can be
found such that

(Ra$ - ivlap)ya = 0. (20)

If the complex conjugate of y& is denoted by y\ , then multiplying (20) by y\ and summing
yields

Rapyayl = ivIanVaVl ■ (21)

Since Rap and Iap are real, symmetric matrices, Rapyayl and Ia^yay\ are real numbers;
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in addition, the latter one is non-negative.* First, assume that 1 aA!ayl > 0. But (21)
cannot be satisfied unless v is zero since the left-hand side is real while the right-hand
side is imaginary. Now, suppose Ia^yayl = 0, which can be seen from (18) to imply that

<xtfy aVp fv DTe-A dV^yayl . (22)
But (8) requires that this be a (nonzero) positive number and, therefore, (21) cannot
be satisfied. Thus, the determinant of Cals cannot vanish unless p is real.

It only remains to show that there are no zeros of \Ca^\ on the positive real axis.
That this is indeed the case follows immediately from the fact that Ra^ is positive
definite when u > 0. Theorem I is, therefore, proved for the most general stress-strain
relations which are thermodynamically admissible.

Further information about the singularities of q'a will now be obtained. However,
in the following discussion we shall assume that the relaxation times, p8 , are inde-
pendent of Xi . This assumption permits Ca/3 (defined by (14)) to be written as

with the definitions

c-"?rF+ ^ + <23)

F';i « f dv, (24)Jy

Fafs = [ Dl'etAi dV, (25)
Jv

F'Je = [ D[?le-4i dV, (26)
Jv

and the equation for q£ becomes

v pFLl + F a/3 + PF a? m/p. (27)„ v + (i/p»)
The following theorem will be proved:

Theorem II. When the relaxation times, p, , are constant the singularities of q'a are
simple poles except at the origin and at — l/p8 where double poles may occur.

For the present let us assume that (Qp) is independent of p. Also, let a, f3 = 1, 2, • • •, N
and s = 1, 2, • • • , M, so that we can write (27) as

Ga,q'a = ft b + (1/p.)L (28)

in which each element of Gaf, is at most a polynomial of order N(M + 1). Theorem I
implies

= G n b + (1 hr))", (29)

*Note that Iapyayp, with ya real, is non-negative as a consequence of (7); furthermore, this property
implies that /«is2/o2/| , with y complex, is non-negative.
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where G and yr are real, positive constants, mr is the multiplicity of the rth
root (p — — l/yr), and m' — N(M + 1). It follows that q'a can be expressed as a
ratio of polynomials in p given by

x <cy (Q \
?'« = - 1 {Jf, t= 1,2,..., (30)

ntp + (i/7,)r
r = 1

where the a'^ are independent of p. The ratio multiplying (Qp)/p can be written as a
sum of partial fractions if the order of the numerator is lower than that of the denomi-
nator; if they are of equal order then q'a will contain an additional constant term multi-
plying (Qp)/p. That either of these conditions is always satisfied can be shown to follow
from (27) by letting p —» «>. If \F"pi > 0 then (27) shows that q'a must behave like
1 !p as p —> oo ; hence

H al'tip'

n b + (i/t,)]"
r = 1

If, however, \F^\ = 0 then

a'a'pp'

1
p' (31)

n b + d/7,)]"
constant, p —> oo . (32)

Consequently, it is always possible to write q'a as the following partial fraction series
with coefficients S'^ and Sap :

q'a =
y y Sap l q 1 (Q") (-qo\hh[p + (1/t,)]' + "J v

The order of the poles of q'a can be determined by examining the behavior of q'a
in conjunction with (27) as p approaches the roots of \Ga$\. Consider then p = e — 1 /yr
and |e| <<C 1; with p close to — l/yr only the term in (33) which behaves like e~m' need
be retained, thus

(34)^ mr mr ' v 7e P pe

with g[r) defined as (Qn)S%'). Multiplying (27) by q^ and summing over /3, and then
substituting (34) for q'a yields

y 4- - 4- F" - em,a(r) (1*,)
^p+(l/P,)+p+F ~e 9> p ' (35)

where p = e — l/yr and

F(,) = F$g?glr) > 0, (36)

F = F^g? > 0- (37)
F" = F'J,g^glr) > 0, (38)
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in which (r) is not summed out. The right-hand side of (35) has a zero of order mr , or
greater if g(pr}(Qis) = 0, whose value must agree with the left-hand side. However, the latter
can have only simple zeros at all poles of q'a since its first derivative, which is

" ? b + (i/p.)]2 ~ p5 < °' (39)
can never vanish in the finite p-plane; note that ^2, FU) -)- F > 0 in order for a zero
to exist in (35). Thus, mr < 1 for all finite and infinite values of y, . It is to be noted
that this conclusion applies even when a yr is equal to one of the relaxation times, p, .
Reference to (35) shows that this equality can occur only if FU) = 0. Also, (27) indicates
that the determinant, has a zero at the origin if and only if |Fa(9| = 0. If this
latter condition exists q'a has a double pole at the origin.

Theorem II is thus proved for the case in which (Qfi) is constant. Furthermore, the
above considerations, upon inverting the transforms, lead to the following time de-
pendence of the generalized coordinates:

1. When |Fj > 0, \F^\ > 0:
Qa = (Q,) 2>X?(1 -e~'/yr). (40)

r

2. When |F„,| > 0, \F^\ = 0:
?« = <&>[Z tXV(1 - e~t/y') + Sa,]. (41)

r

3. When |F0/J| = \F$ = 0:

?« = (0d)[Z tX^I - e~'/yr) + Sa, + S'a',t\. (42)
r

It is also readily shown that symmetry and realness of the matrices in (27) imply that
S(ap , Sal3, and S"p are symmetric and real.

When the restriction that the (Qp) are constant (i.e., independent of p) is removed,
then q'a contains poles at — 1 /p, and at — l/yr . Furthermore, through considera-
tions similar to those used to show mr < 1, we find that all poles are simple if Z)*-<s>
is positive definite for all s; if this is not the case, double poles may occur at — 1 /p, .
q(t), therefore, has time dependence similar to that shown in Eqs. (40)-(42) except
there will be additional exponentials with time constants p„ , and possibly terms of
the form fe-'17'*' . Also, the correspondence between the vanishing of a given determi-
nant and the time dependence indicated in cases 1, 2, and 3 above will not necessarily
be the same. For example, if T( and F,- in (15) are zero and D" = Faft = 0, then q'a
will contain at most a simple pole at the origin; hence, its inverse will not have the
term proportional to time which is shown in (42).

3. Stress response. Yiscoelastic stresses that are derived from a complementary
operational-variational principle, which is analogous to the principle of minimum
complementary energy for elastic media [7], will now be shown to have time dependence
similar to that of the displacements discussed above. We consider stresses expressed
by the series

= iii{x)Qa{t) + Tu{x)W), (43)
in which a is to be summed out (ct = 1, 2, • • • , N), //* ( = /,") are given functions of
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the coordinates #,■ which vanish on Ar where stresses are prescribed, Qa are time-de-
pendent functions which we shall call generalized stresses, and onir the vector THn
is equal to the prescribed surface force, TiH . It is further assumed that for each a the
/," satisfy the equilibrium equations

1u.i = 0, (44)
and the stresses T{jH satisfy the equilibrium equations with prescribed body forces
FiB = FiH, hence

Taj + Fi = 0. (45)

rii are the components of a unit vector normal to A. It is not required that the stresses
or,-,- satisfy compatibility or the boundary conditions on displacement.

The Laplace transform of the appropriate complementary functional is [1]

n = \jr A))a'ua'kl dV - J U[na'un, dA, (46)

where U'iH is the transformed, prescribed surface displacement

U'iH = U<(x)/p, (47)
and the operational compliance matrix, A" , as given by thermodynamics [1, 2], is

phlU) (~lkl

= E T^r— + ^r + (48)
8 J- i ' p

and each matrix composing A" satisfies the same properties as those composing Z\) .
The generalized stresses are obtained in the same way as the generalized coordinates

in the previous discussion. Namely, the transformed stresses

f'a = n,Q'a + Tu/p (49)
are substituted into I'„ and then the condition for stationary behavior, bl'„ = 0, provides
us with a set of N algebraic equations for the Q„ ,

BanQ'a = (qf>)/p, (50)

where we define

Ba
t*   flkl (a) syklD —■ + — + c:jh

Jv _ » 1 + T,p p

<*> - LdA - L _? Tt^p+~f+c

/<"/!« dV (51)

faTkl dV (52)

The similarity between the present set (50) and the previous equations (13) is
evident. There are, however, two small differences. Specifically, observe that the right-
hand side of (13) has a factor l/p2, while the factor is l/p in (50); this implies that
Q'a cannot have a double pole at the origin. As the second difference, it is noted from
(50)-(52) that if JAu ^ 0 and C''kl = 0, then Q'a does not vanish at p = co; this leads
to an infinite (delta function, 8(t)) stress at t = 0. Thus, on the basis of these remarks
and in analogy with the previous Theorems I and II we can state two companion
theorems:
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Theorem III. The singularities of Q'a occur only on the nonposititve real p-axis.
Theorem IV. When the retardation times, t, , are constant the singularities oj Q« are

simple poles except at — 1 /r, where double poles may occur.
When the (qp) are independent of p, double poles do not occur and the time dependence

of the generalized stresses is given by

Qa = Z nv/x' + Ta + T"8(f) (53)
r

where T(J\ Ta , and T"a are constants, the vanishing of which depends on the matrices
in (51) and (52), and the Ar are positive time-constants. Since a double pole at the origin
does not occur there is no term proportional to time.

4. Conclusions. It has been shown that when prescribed loads and displacements
are step functions of time, use of the Ritz method of approximate analysis, in con-
junction with operational analogs of the familiar potential and complementary energy
principles of elasticity, leads to time-dependent displacements and stresses that are
given in most cases by series of monotonically decaying exponentials. This result is
consistent with the transient behavior, which was deduced by Biot [3] from different
considerations, for generalized coordinates that define the motion of a linear thermo-
dynamic system subjected to step-function forces. Also, it should be clear that the same
results as derived here by the Laplace transform would have been obtained by using
the convolution form of variational principles discussed in the introduction.

While our results concerning time dependence are based on the Ritz method, it
seems reasonable to expect that exact analysis as well as other methods of approximation
(e.g., the method of Kantorovich [7]) would provide the same characteristic exponential
behavior. This appears to be quite difficult to prove, in general, but it is in agreement
with numerical examples [1],

As a final point, it is recognized that in many viscoelastic problems exact inversion
of transformed variables is very involved, even when Theorems I-IV apply. However,
an easily applied, approximate method of inversion given in an earlier paper [8] can
be used, and it is especially suited for inverting transforms which have singularities
on only the real axis.
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