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ON THE EXISTENCE OF NORMAL MODE VIBRATIONS OF
NONLINEAR SYSTEMS

WITH TWO DEGREES OF FREEDOM*

BY

R. M. ROSENBERG
University of California, Berkeley, Cal.

Abstract. A nonlinear, conservative system having two degrees of freedom is
considered. The potential energy is subject to certain restrictions which are consistent
with the strain energy of springs. Then, the notion of transversals; i.e., of curves or-
thogonal to equipotential lines, is introduced in order to prove the existence of an
m-phase and of an out-of-pli&sc normal mode of vibration, no matter how nonlinear
the springs. It is shown, that the transversals are also very helpful in the discussion of
general motions of the system.

Introduction. In a series of earlier papers, the normal mode vibrations of nonlinear
systems having many degrees of freedom have been discussed [1, 2, 3, 4, 5]. While it
was possible to treat many properties of these normal mode vibrations, their existence
was only established in the case of so-called "similar" normal mode vibrations** [3].
In this paper we should like to discuss the question of existence of normal mode vibra-
tions when these are non-similar. The entire treatment here is restricted to systems
having two degrees of freedom. Certain features of our proof are intimately linked
with the fact that the number of degrees of freedom does not exceed two. Hence, it
may be expected that the proof becomes more complicated for systems having more
than two degrees of freedom.

The system. As a model of admissible systems, we consider a linear chain of three
material points having respectively, masses m0 — 00, nij and m2 , (0 < mJi2 < °°).
Since m0 is infinitely large, a force of finite magnitude cannot accelerate it; hence, it
is a fixed point in an inertial reference frame. The masses m,i and m2 have, respectively,
the degrees of translational freedom u and v in the direction of the chain. Each mass
point is connected to the other two by a spring; thus, the entire system consists of two
movable masses and three springs; two of the springs are so-called "anchor springs"
since they terminate on a fixed point, and one is a so-called "coupling spring" since it
couples the two masses together. The term spring identifies a mass-less, one-dimensional
mechanical device which changes its length under the action of a force. It is capable
of storing (but not of creating or destroying) energy, and the energy stored in it is
assumed to be a continuous function of the absolute value of the length change and has
continuous first and second derivatives. In consequence of this dependence on the
absolute value of the length-change, every spring resists (or aids) a deflection of pre-
scribed magnitude in the same degree, be it an extension or a compression of the spring.

The force required to produce a prescribed length-change in any spring is called the
spring force of that spring. Let this length change be denoted by w. Then, the spring

*Received January 13, 1964.
**Normal mode vibrations are said to be "similar" when the wave shapes in any two degrees of

freedom are similar, i.e. when they satisfy Xi(t)/Xj(t) = const.
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force of the z'th spring may be written as

fi(w) = AiW + 0{w2)

and, if ^ 0, the quantity 0(w2) is negligible compared to A,w for \w\ « 1. We shall
require that not all , (i = 1, 2, 3) be zero. Hence, nonlinearizeable systems [2, 3]
are not included in the present treatment.

We assume that one, and only one, configuration of the system exists in which it is
capable of remaining at rest indefinitely. This is the equilibrium position, and the origin
of u and v is so chosen that u = v = 0 in the equilibrium position. Finally, we assume
that the spring forces are the only forces acting on the masses. The system described
here is shown in two alternate forms in Fig. 1.

I—V\MMA—'
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Fig. 1.
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Representation of the motion. The system described here is conservative and
scleronomous; hence the energy integral

T - U = h (1)
exists where T = T(u, v) is the kinetic energy, XJ(u, v) is a potential function equal to
the negative of the strain energy stored in the springs, and 0 < h = const, is the energy
level of a given motion.

The mathematical representation of the motion may be made in two ways resulting,
respectively, in the system H (Hamilton) of equations, or in the system M (Maupertuis).
Hamilton's principle yields the equations of motion

mxu = ~ U(u, v), m2v = -f- U{u, v)
oil av

and the transformations x = m\/2u, y = m\/2v result in the system II

* = dx U^X' yS>' V = dy U(*X' ̂  ®

where dots denote differentiation with respect to time.
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The principle of least action (also called the principle of Maupertuis) leads to the
system M [4]

+ (*'2 + y'2)\x'[x' g + y' %£) - 0r'2 + y'2) = 0,
(3)

2(U + h){x"(x'2 + y'2) - x'(x'x" + y'y")}

^ (~ dx " dy / v~ ' a ' dx

2(U + h){y"(x'2 + y'2) - y'(x'x" + y'y")}

+ <*•' + §+*•%)- (-'■ + V") If} - o,
where primes denote differentiation with respect to the arc length s.

It is convenient to eliminate the parameter s between the last pair of equations,
because the form of the resulting single equation is much simpler than (3); one finds [1]

2(U + h)y" + (1 + y'2){y' ^ - |^) = 0, (4)

where, now, primes denote differentiation with respect to x. No confusion will arise
with regard to this notation because the entire treatment which follows is based on (2)
or (4). Hence, dots will always indicate differentiation with respect to time, and primes,
differentiation with respect to x.

In some sense, (2) and (4) must be equivalent since they are both mathematical
statements relating to the same problem. In fact, the equations of motion (2) have
solutions x(t), y(t); when t is eliminated between them one finds y = y(x) and this
must satisfy (4).

Clearly, one may interpret (2) as the equations of motion of a unit mass, subjected
to forces whose x and ^-components, respectively, are Ux and Uv (where subscripts are
used to denote partial derivatives). This unit mass and force system is called the pseudo-
system. During motion, the unit mass will trace out a trajectory y(x) in the xy-plane
and that trajectory satisfies (4). Hence, we may base future arguments either on the
dynamical problem of the motion of the unit mass in the xy-plane, or on the geometric
problem of integral curves of (4). Both viewpoints will be used.

Restrictions on U. The potential function U(x, y) is subject to the following
restrictions:

(a) it is negative definite;
(b) as mentioned earlier, it is a function of the absolute values of the length-changes

of the springs, or

U = U(\x\, \y\, \x - 2/|); (5)
(c) its partial derivatives are of the form

Ux = ax + by + P(x, y),

Uy = cx + dy + Q(x, y),

where P and Q may be neglected compared with the leading terms in (6) when
\x\, \y\ « 1.

When U(x, y) satisfies the conditions (a), (b) and (c), it is said to be admissible.

a b
c d 4= 0 (6)
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An examination of the admissibility-conditions shows that they are consistent with
the common concepts of springs and with the structural properties of materials from
which springs are manufactured. Condition (a) implies that the spring forces tend to
return the physical system to its equilibrium position. Condition (b) is equivalent to
the observation that the spring forces are odd functions of the length-changes. Finally,
condition (c) shows that, for sufficiently small length-changes, the springs behave like
linear springs.

Normal mode vibrations. Here we shall define normal mode vibrations in terms of
a vibration-in-unison of the physical system. An admissible spring-mass system is said
to execute a vibration-in-unison if the motion satisfies all of the following conditions:

(i) all material points execute equi-periodic motion, or

Xiit) = Xi(t + T), (i = 1, • • • , n)

where T is a constant;
(ii) there exists a time t — t0 &t which all particles pass through the equilibrium

position, or

Xi(t0) = 0, (i = 1, ••• ,n)

(iii) there exists a time t = U t0 at which all velocities vanish, or

Xi{ti) = 0, (i = 1, • • • , n)

(iv) the position of every particle at any instant of time t is uniquely determined
by that of any one of them at the same instant, or

Xi = XiiXiit)), (i = 2, ■■■ ,n)

are all single-valued functions of xx .
In our system of two degrees of freedom, Xi = x, x2 = y, i = 1, 2.

Eif a linear system vibrates in normal modes, its motion satisfies all of the properties
of a vibration-in-unison and conversely, when a linear system vibrates in unison, it
moves in a normal vibration mode. Hence, it is reasonable to identify "vibration-in-
unison" with "normal-mode-vibration" whether the system is linear, or nonlinear.
In this paper we shall prove the following central theorem.

Theorem. A system of two degrees of freedom whose equations of motion are (4)
possesses at least two normal mode vibrations in the sense of conditions (i) to (iv), if U(x, y)
is admissible in the sense of restrictions (a) to (c).

The geometry of normal mode vibrations. Before proceeding to the proof of the
above theorem, it is helpful to interpret vibration-in-unison in terms of trajectories
in the xy-plane; i.e., of integral curves of (4). When condition (iii) is satisfied, the kinetic
energy T(x(t0, y(ti)) = 0 because T is a positive definite, quadratic form in the velocities.
Then, the energy integral (1) reduces at t = U to

U(X, Y) + h = 0, h > 0 (7)
where (X, Y) are those points in the xy-plane for which the velocity of the unit mass
(of the pseudo-system) vanishes when the energy level is h. Equation (7) defines a
curve in the xy-plane called the T-curve. In view of the admissibility conditions (a)
and (b), the T-curve is closed, surrounds the origin and is symmetric with respect to it.
This curve is also called the bounding curve because it has been shown [1, 4] that all
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integral curves of (4) must lie in the finite, closed domain bounded by the T-curve.
Since condition (iii) is satisfied by a normal mode vibration, every integral curve of (4)
which corresponds to a normal mode vibration must intercept the Y-curve.

Since a normal mode vibration satisfies condition (ii), x and y vanish simultaneously
or, every integral curve of (4) which corresponds to a normal mode vibration must pass
through the origin of the xy-plane.

Finally, (iv) is satisfied or, every integral curve y(x) of (4) which corresponds to a
normal mode vibration must be single-valued. An integral curve which satisfies all these
properties is called a modal line, and is denoted by T* or T**.

Clearly, the converse of the above statements is also true, or every integral curve
of (4) which has the above three properties corresponds to a normal mode vibration.
Hence, our theorem will be proved if we can show that there exist two integral curves
of (4) which originate on the outer contour, which pass through the origin and which
are single-valued. In this proof, we shall use the following theorem.

Theorem. Every integral curve of (4) which intercepts the bounding curve intersects
it orthogonally [1, 4],

The transversals. In order to prove the existence theorem, it is helpful to introduce
the notion of the transversals. The equations

U(x, v) +h* = 0, (8)
where h* is a constant satisfying 0 < h* < h, define the equipotential curves y = <p(x),
called henceforth "^/-curves". Inasmuch as U is negative, definite and h* > 0, the
i?-curves constitute a one-parameter family of non-intersecting closed curves surround-
ing the origin, and they satisfy

d<p = Ux(x, <p) .
dx Uv{x, <py K )

as may be readily verified by differentiating (8). The transversals are the family of
curves which intersect the equipotential curves orthogonally. We shall call them the
P-curves and denote them by y = 6(x). In view of (9) they satisfy

dd _ Ue(x, 6) . .
dx ux(x, ey { )

The transversals have a property which is of central importance to the problem
in hand: the P-curves define the direction field of the forces which act on the unit mass of
the pseudo-system.

This will be seen from an inspection of the equations of motion of the pseudo-system;
i.e. from (2). Since the right hand sides of (2) are the force components of the pseudo-
system it is clear that the P-curve which passes through any point (x, y) does so with
the slope of the force of the pseudo-system. The P-curves connect points on the In-
curve with the origin. We shall endow them with a sense of direction by defining their
intersection with the T-curve as their "point of issue." Then, their sense of positive
direction is such as to point toward the origin of the xy-plane. Their importance to
our problem is that the forces of the pseudo-system are tangent to, and point in the
positive direction of the P-curves, and they decrease monotonically to zero as the
P-curve tends to the origin. Because of this property, it is desirable to explore the P-
curves in some detail.
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It was already observed that (8) describes a continuum of closed curves surrounding
the origin, and every neighborhood containing the origin in its interior also contains
such curves. Moreover, since U is a definite form, Ux and Uv vanish simultaneously
at the origin. Hence, (9) has a singular point at the origin, and this singularity must
be a center. Now, the Poincar6 theory of simple singular points [6] shows that the
character of the singular point of a differential equation of the form

4= 0dy _ ex + dy a b
dx ax + by' c d

can be deduced from certain relations between the constants. The cases of interest here
are the following:

(I) if a + d = 0 and ad — be > 0, the origin is a center;
(II) if a + d 9^ 0, ad — be > 0 and (a + d)2 — 4(ad — be) > 0, the origin is a node.

From the established fact that the E-curves form a center at the origin, we shall now
deduce the the origin is a node for the transversals.

Expanding the partial derivatives of U about the origin one has, since Ux(0, 0) =
Uv(0, 0) = 0,

Ux = xUxx + yUxy + higher order terms

Uv = xUvx + yUvv + higher order terms

If these are introduced into the equation of the -E'-curves; i.e., into (9), one finds that
for the equipotential curves

a = Uxy , b - Uvy , c = — Uxx , d = — Uxy .

Then, it is seen that a + d = 0, and

ad — bo = UXXUVV — Vly .

Hence, the first condition of (I) is satisfied and, from the second it follows that, in the-
neighborhood of the origin,

UXXUyy ~ Uly > 0. (12)
Since the origin is a center for the .E'-curves, and since every P-curve must intersect

every Z?-curve, it follows that every P-curve must pass through the origin. But the
P-curves satisfy (10), and that equation also has a singular point at the origin. Hence
the origin must be either a node or a focus for the P-curves because these are the only
simple singular points that are intersected by every integral curve.

The substitution of (11) and (10) shows that, for the transversals,

a = Uxx , b = Uxy , c = Uxy , d = Uvv .

Hence, for the P-curves,

a + d = Uxx + Uyy ,

which does not vanish, in general. The quantity

(a + d)2 - 4(ad - be) = (Uxx - Uvv)2 + 4U\y ,

which is positive, and finally one has
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ad — be = UXXUyy — Uly .

But, in view of (12), that quantity is also positive and, thus, all conditions (II) are
satisfied. It follows, that the origin is a node for the transversals, which proves the
following lemma.

Lemma 1. All P-curves pass through the origin with common slope 6'0 .
Consider the xy-plane shown in Figure 2 together with the T-curve. As stated earlier,

the T-curve is the locus of points P(X, Y) of zero velocity for energy level h. Let the
point P0(Xa , Ya) denote the intersection of the T-curve with the straight line which
passes with slope 8'0 through the origin. Further, let Pi(Xi , Fx) be a point on the In-
curve whose distance from the origin is stationary with respect to neighboring points
on the T-curve. In Figure 2, the point P„ is shown "below" Pt . No generality is lost
thereby because an exchange of x and y-axes can always produce this configuration.
Moreover, no generality is lost by locating both of these points in the first quadrant.
We simply designate as the first quadrant that which contains P0. Since every quadrant
contains at least one point on the T-curve which has stationary distance from the
origin, we can always produce the configuration shown. We expressly except the case of
coincidence of P0 and Px because that case can be shown to result in so-called "similar"
normal mode vibrations, a case which is very much simpler that the one discussed
here and which has been treated elsewhere [2, 3, 4, 5].

Now, the normal to the T-curve at the point Px points in the direction of the origin.
Hence, the transversal issuing from Pi must have a point of inflection in order to termi-
nate at the origin with slope 6'0 .

Similarly, the normal to the T-curve at the point P0 points "above" the origin.
Consequently, it must also have a point of inflection in the first quadrant as it also
terminates at the origin with slope 6'0 .

It is seen, then, that at least some transversals have points of inflection. The locus
of points of inflection of P-curves is readily found by equating to zero the second
derivative of 6 with respect to x. By differentiating (10), one finds

U.eiUl ~ V\) ~ UMe(Uxx ~ U„)
U:s , (13)

and the locus of inflection points of P-curves is given by

Fix, y) = UJJJl - Ul) - UXUU(UXX - Uyu) = 0. (14)

We shall call this locus the P-curve; it is also shown in Figure 2.
The P-curve must necessarily intersect the transversals issuing from P0 and Px

because both have been shown to have inflection points. The intersection of the P-
curve with the T-curve is denoted as the point P2(X2 , F2). One can readily show that
the P-curve enters the origin with slope 6'0 and, there it has second-degree contact with
the straight line connecting the origin and P0 .

For later purposes, it is also of interest to construct the locus of points on P-curves
whose distance from the origin is stationary with respect to neighboring points on the
same P-curves. It is easy to show that this locus is defined by the equation

G{x, y) = yUx - xU„ = 0. (15)

This locus will be called the G-curve; it intersects the T-curve at Px , and it enters the
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y

P2(X2,Y2)
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origin with slope 8'0 and has second degree contact there with the straight line from the
origin to P0 .

Consider now the transversals as the point of issue moves in a clockwise direction from
the positive y-axis intercept to the positive z-axis intercept along the T-curve. The initial
curvature starts out being positive, say, and decreases monotonically to zero at P2
it then becomes negative. The transversals beyond P2 will have points of inflection
until the point of issue has descended to some point Pa(X3 , Ya) which is such that
the transversal issuing from it has second degree contact at the origin with the straight
line between the origin and P0 . Transversals issuing from a point below P3 have no
intersection with the /''-curve and, hence, no point of inflection.

Inasmuch as U is symmetric with respect to the U-axis in the x, y, f/-space, every
locus and transversal in Fig. 2 is symmetric with respect to the origin of the xy-plane.
Hence, the entire field of P-curves can now be constructed; it is shown in Fig. 3. In
this figure, arrows have been placed on the transversals, indicating their positive di-
rections.

Fig. 4.

Figure 4 is a photograph of a set of curves drawn entirely by an analog computer.
The T-curve was produced by letting the computer integrate (9) at the energy level h.
The transversals were obtained by letting the analog computer integrate (10) for initial
points lying on the T-curve. The particular example, solved by the computer was

U = -ix2 - ix4 - h2 ~ V ~ t(* ~ yf ~ i(x - y)\ h = 1.
This particular U was chosen to insure that the system is strongly nonlinear, and that
it is not nearly "symmetric". (A symmetric system is one in which the anchor springs,
are equal and the masses mi and m2 are equal, and it always has similar normal mode
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vibrations.) It is seen that the experimental results agree in every detail with theoretical
predictions.

The trajectories. We shall now consider certain trajectories of the unit mass of
the pseudo-system; i.e., certain integral curves of (4). The trajectories considered are
those which issue from points on the F-curve; they will be called T-curves. The trans-
versal which issues from the same point on the T-curve as a given trajectory will be
called the transversal associated with that trajectory, or the "associated P-curve."

For our purposes, it is convenient to introduce (10) in (4), and to rewrite the latter as

>" ' -|cr+3 w "e% (18)
Now, the equation (10) of the transversals B(x) is singular at the origin, and the equation
(16) of the trajectories is singular on the T-curve (that curve being defined by
U + h = 0). Therefore, we shall denote as regular points all those, except the origin,
which lie inside of, but not on, the T-curve.

We shall now establish a number of properties of the trajectories issuing from points
P(X, Y) of the T-curve. First we state a lemma.

Lemma 2. Every trajectory is tangent to its associated transversal on the T-curve.
Evidently, this requires that trajectories intercept the T-curve orthogonally, and this
has been proved elsewhere [1, 4].

Lemma 3. The curvature kt(X, F) of a trajectory at its point of issue P(X, Y) has
the same sign, but is less in magnitude, than the initial curvature kp(X, Y) of its associated
transversal.

To prove this lemma, we first note that the curvature of a T-curve at its point of
issue is given by [5]

y'\x, Y) =

But, in view of Lemma 2,

u„ + y'(u„ - u- - v'U„)
uz I. r (17)

Ux{X, Y)

If this relation is introduced in (17), one finds

y'(X, Y) = l\- (18)

y"(X, Y) = | U„(Ul - ul) - UXU„{U„ - UJ
ul 1 (19)

A comparison between (13) and (19) shows that

kt(X, Y) = \kp{X, Y), (20)

which proves Lemma 3. It states essentially that, at its point of issue, a trajectory is
"bent in the same direction, but less so" than its associated transversal.

Next we prove the following lemma.
Lemma 4. No trajectory can coincide everywhere with its associated transversal unless

that transversal is a straight line.
For the proof, we observe from the equations of motion (4) that a mass point, acted

on by a force having components Ux and Uv , tends to follow a curved transversal as
its mass tends to zero and follows it precisely only in the case of zero mass. However,



1964] NORMAL MODE VIBRATIONS OF NONLINEAR SYSTEMS 227

the mass of the pseudo-system is of magnitude unity, not zero, which proves Lemma 4.
Lemma 5. At any regular point, the curvature of every trajectory is such as to yield

to the force field.
From the standpoint of predicting the behavior of a trajectory that passes with

prescribed slope through a given point, Lemma 5 is the most useful of all those given
here. To prove it consider Fig. 5 showing a family of transversals, and a trajectory

irT-cu rve

~ -curve

P(X,Y)

Fig. 5.

T intersecting them. (Note that every trajectory intersects or is tangent to one trans-
versal at every regular point, because the transversals fill out the entire domain inside
the T-curve, and no curved trajectory coincides with any of them.) The arrows on the
transversals indicate the direction of the forces acting on the unit mass at every point.
It is evident (without a detailed proof that could easily be constructed by considering
force components tangent and normal to the trajectory) that Lemma 5 is true.

Lemma 6. If a trajectory is tangent to a transversal at any regular point, it has zero
curvature at that point.

The proof of this lemma follows directly from (16). This property of trajectories
was noted earlier by Kauderer [7].

Lemma 7. Every trajectory that intersects its associated transversal at a regular point
must have passed through a point of zero curvature at some regular point.

For the proof of this lemma consider Fig. 6 which shows a trajectory that intersects

its associated transversal. Clearly, there exists, then, some other transversal which is
tangent to the trajectory at some intermediate point R(x, y) between the point of issue
P(X, Y) and the point of intersection Q(x, y). In view of Lemma 6, R(x, y) is a point
of zero curvature of the trajectory.

Lemma 8. Every trajectory that does not pass through the origin must have at least
one point of tangency with at least one equipotential line.

Note that this does not exclude the possibility that the trajectory may pass through
the origin after tangency with an equipotential line. The proof of this lemma is self-
evident; however, a formal proof can be made on the basis that every integral of (4)
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T-curve/

0
Associated
Transversal J1 p (X ,Y)

E-curve
-r- curve

T-curve

0
* Associated
Transversals p^x

E-curve '
T-curve

Fig. 7.

is a continuous smooth curve that must lie in the finite closed domain bounded by the
T-curve. This lemma is illustrated in Fig. 7.

Lemma 9. No trajectory can have a point of zero curvature prior to its first point of
tangency with an equipotential line.

This is the central lemma required for our proof of the basic theorem. To prove it,
we make use of the dynamics of the pseudo-system. We first observe that vanishing of
the trajectory curvature at a regular point Q(x, y) implies, in general, that Q is a point
of inflection of the trajectory because, in general, y'"{x) does not vanish at the same
point as y"(x). However, let us assume that both these derivatives do vanish at the
same point. Then, there exist some trajectories y{x) neighboring on y(x), for which
y"{x) = 0 at some point Q(x, y) in the neighborhood of Q. For this trajectory, y"'(x)
will certainly not vanish where y"(x) vanishes. Now consider Figs. 8(A) and (B), both
showing trajectories which have a point of inflection at Q. The difference between these
is that the curvatures of the transversals in the neighborhood of Q have, in Case (A),
curvatures of the same sign as that of the trajectory prior to its arrival at Q, and in
Case (B), these curvatures are opposite in sign. Clearly, Case (A) contradicts Lemma 5
and is, thus, ruled out.

Now, consider Figs. 8 (C) and (D). The difference in these is connected with the
direction of the forces as the transversals intersect the trajectory. In Case (C), the
forces change direction such that the force direction at Q is reached monotonically
while, in Case (D), the force direction "overshoots" and then returns. In other words,
the angle between the force direction at Q and at any point on the trajectory prior to
its arrival at Q has, in Case (C), only a single zero at Q and, in Case (D), it also has a
zero at some point on the trajectory prior to its arrival at Q. We shall show that Case
(C) is excluded. For, assume that the force direction had had, everywhere along the
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trajectory, the direction which it has at Q. Such a case would certainly be more favorable
to producing tangency between force and trajectory at Q than Case (C) which is being
considered. However, if the initial angle between velocity and a force of constant di-
rection and finite magnitude is not zero, then it requires an infinitely long time to reduce
that angle to zero. Hence, Case (C) cannot arise.

We now consider Case (D). Consider the angle between trajectory and force di-
rection measured from trajectory to the force direction. This angle is, initially, acute
and, near Q, it is obtuse. A simple consideration shows that this statement is true for
any trajectory which satisfies Lemma 5 and which is tangent to a transversal at some
regular point. But, if it holds, than there must be at least one point on such a trajectory
prior to its arrival at Q where the force direction is normal to the trajectory. Then,
since the forces are tangent to the transversals, and the equipotential lines are normal
to them, the trajectory must be tangent to an equipotential line prior to its arrival at
Q. This proves Lemma 9.

We require one final property in order to prove the following basic lemma.
Lemma 10. If a trajectory y = /(x) which passes through the origin has prior tangency

with an equipotential line, it cannot be a modal line.
The condition (iv) of normal mode vibrations, relating to single-valuedness requires

that the modal line y = f*(x) possess everywhere an inverse x — g*(y), or the relation

T-curve

Tangent at Q
Tangent at Q\

T-curve

P(X,Y) r"CUrVe

(C) (D)
Fig. 8.
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■T-curve

>x

P(X,Y)

between f*,g* on the one hand and x, y on the other must be a homeomorphism. Consider
now Figure 9 which illustrates a trajectory that attains the origin after having been
tangent to an E-curve. It has been drawn in such a fashion that y is a single-valued
function of x. However, it is clear that now, x is no longer a single-valued function of y.
A simple consideration shows that no case can be constructed where a trajectory, satis-
fying Lemma 5, violates Lemma 10.

While the above properties of trajectories provide the material with which to prove
the basic theorem, it is evident that they are also useful in a general discussion of integral
curves of (4), particularly if these integral curves attain the F-curve.

The existence of modal lines. We proceed now with the proof of the basic theorem.
First, we observe that every trajectory which issues from the T-curve does so with a
prescribed slope; i.e., normal to the F-curve. Now, the equation whose integrals we
are discussing; i.e., (4), satisfies the conditions for existence and uniqueness of solutions
everywhere in the open region that contains the origin and is bounded by the T-curve;
hence, not two distinct solutions can issue from the same point on the T-curve. It follows
that no trajectory issuing from the T-curve can be a closed curve. By Lemmas 8 and 9,
every trajectory, except the modal line, is tangent to some equipotential line without
having had a point of inflection prior to this occurrence. Moreover, by Lemma 10,
the trajectory is not a modal line if its passage through the origin is preceded by tangency
with an E-curve. Hence, we have the following theorem.

Theorem 1. Modal lines, if they exist, of a two-degree-of-freedom system with ad-
missible U in the sense of conditions (i) to (iv) do not have points of inflection.

This theorem proves that no modal line can issue, in the first quadrant, from points
on the arc (P2Pi\ of the T-curve (see Fig. 2) because any trajectory issuing from such
points cannot pass through the origin without having at least one point of inflection.
This is a consequence of the fact that trajectories issuing from these points not only
point to the right of the origin but have initial curvature moving them still further
to the right.

It is now evident that the search for modal lines consists in seeking trajectories
that issue from the F-curve and which are "tangent to the equipotential line of zero
energy"; i.e., the origin, without having been, earlier, tangent to some other equipo-
tential line.

The general idea of our proof is illustrated in Fig. 10. We shall consider two tra-
jectories T0 and T2 issuing, respectively, from points P,,(X0 , Y0) and P2(X2 , F2) and
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demonstrate that T0 passes above the origin, and T2 to the right of it. Hence there
must exist a point P*(X*, Y*) lying between P2 and P0 such that the trajectory T*
passes through the origin. This is a consequence of the fact that the differential equation
(4), satisfied by any T-curve, is regular in the open region bounded by the F-curve
and, hence, the solution depends in a continuous manner on the initial condition. In
other words, as the point of issue P(X, Y) moves in a continuous manner in a counter-
clockwise direction from P0 toward P2 , the y-axis intercept of the T-curve moves in a
continuous manner toward the origin.

Consider the T0-curve which issues from P0(X0 , Y0). By Lemma 2, it is tangent
at P0 to its associated trajectory. By Lemma 3 it has a lesser initial curvature, but of
the same sign, as its associated trajectory. Hence, it lies at first above its associated
trajectory. Now, this curve either passes through the origin in which case it is the desired
T*-curve, or it is by Lemma 9 tangent to an i?-curve without having had a prior point
of zero curvature. But, then, by Lemma 7, it cannot have crossed its associated trans-
versal and must, thus, have remained above it, as shown.

Precisely the same arguments show that the T2-curve must have remained to the
right of its associated trajectory and, thus, passes to the right of the origin.

Now consider a trajectory issuing from a point P(X, Y) as that point moves in a
continuous fashion in a counter-clockwise direction from P0 to P2 . The resulting T-
curve which, initially, coincides with the T0-curve now changes in a continuous fashion
until it coincides with the TVcurve. Hence, it must have passed through a point
P*(X* , Y*) at which it has passed through the origin. This is the modal line, or the
71*-curve.

It is of interest to note that the point P* must be interior to the arc (P0Pi] because,

P2 (X2 ,y2)

-r*1 - curve
P, ( X, , Y,)

P*(X* Y*)

•curve

Fig. 10.
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Fig. 11.
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by Theorem 1 no modal line can originate on (P2Pi]. Moreover, the curvature of this
modal line is negative because the initial curvatures of all transversals in the interval
(P2Pi] are negative, and there is no change of curvature. Finally, this modal line gives
rise to an zra-phase normal mode vibration because it lies in the first quadrant so that
y > 0 when x > 0. Hence, we have the following theorem.

Theorem 2. A system of two degrees of freedom whose equations of motion are (4)
possesses an in-phase normal-mode-vibration in the sense of conditions (i) to (iv), if U(x, y)
is admissible in the sense of restrictions (a) to (c).

In Fig. 11 is shown a photograph of a set of curves drawn entirely by an analog
computer. The T-curve was traced by the computer which integrated (9) under initial
conditions h* = h. Also shown is a family of trajectories which were drawn by the
computer by integrating (4), and associated transversals by integrating (10). The
numerical values were the same as those given in connection with Fig. 4. It is seen
that the experimental results bear out entirely the theory presented here.

We now proceed to the second part of the basic theorem. Consider Fig. 12 showing
the T-curve and the point P2(X2 , Y2) where the initial curvature of the transversals
vanishes, being positive to the right of P2 and negative to the left. Now because of the
symmetry of the entire figure with respect to the origin, there exists a point
P2(—X2 , — Y2) in the third quadrant where kp(X, Y) vanishes also and, (by circular
symmetry also) kp(X, Y) is positive to the right of P2 and negative to the left. Next,
consider either arc (P2P2) on the T-curve. It will be seen that at one end of this arc
kp(X, Y) > 0, and at the other kp(X, Y) < 0. Since the initial curvature changes in a
continuous manner with a continuous change of the point P{X, Y) on the T-curve,
there must be at least one point on the arc (P2P2) where the curvature also vanishes.
Let it be denoted by P4(X4 , F4). Then, by circular symmetry, kPa also vanishes at

Fig. 13.
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P4( — X4 , — F4), and the transversals issuing from either side of P4 have opposite
initial curvature. This is, in fact, illustrated in Figs. 3 and 4.

We now consider two trajectories, issuing, respectively from P5(X5 , F5) and
P6(Xe , F6) as shown in Figure 12. By precisely the same arguments used in connection
with the TVtrajectory, Tb passes above the origin and TR below it. Hence, there must
exist a point P** such that the trajectory T** which issues from it passes through the
origin without having a point of inflection. This is a modal line lying in the second quad-
rant. Since x > 0 and y < 0 everywhere along this modal line, the corresponding normal
vibration is an out-of-phase mode. This establishes the following theorem.

Theorem 3. A system of two degrees of freedom whose equations of motion are (4)
possesses an out-of-phase normal-mode-vibration in the sense of conditions (i) to (iv), if
U(x, y) is admissible in the sense of restrictions (a) to (c).

Hence, the basic theorem, stated earlier in the paper has been established.
Figure 13 shows a photograph of a graph of transversals, trajectories and the maxi-

mum equipotential line, done on an analog computer for the same problem as described
in connection with Fig. 4. This illustration is similar to that of Fig. 11, except that it
shows curves in the neighborhood of the out-of-phase mode. Again, it will be observed
that the experimental results agree entirely with theoretical predictions.
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