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DISTRIBUTIONS INVOLVING NORMS
OF CORRELATED GAUSSIAN VECTORS*

BY
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Abstract. The norm of a Gaussian vector is called a Rayleigh random variable.
We compute various first and higher order probability density functions of products
and quotients of correlated Rayleigh variates. Moments of these distributions are also
calculated. The main results are summarized in Section 2 below. Extensive use is made
of formulas involving special functions. These identities enable us to obtain the desired
results directly and efficiently.

1. Introduction. Various authors [1, 2, 3, 4, 5, 6] have examined properties of
Rayleigh variates and considered some of their applications; in particular, see also the
bibliographies in [1] and [2]. Our present objective is to extend some of the above ref-
erenced results by computing density functions of products and quotients of Rayleigh
random variables.

We recall the definition of a Rayleigh random variable. Let X = {z,, z,, - , z,}
be an n-dimensional Gaussian random vector; that is, X has a joint n-dimensional
Gaussian distribution. Then |X|, the norm of X, is termed a Rayleigh variate; and
|X|* is essentially a chi-square random variable. If X has an arbitrary positive definite
covariance matrix, then it is of course possible to write down the distribution of |X]|
as a multiple integral. However, if we assume that X has mean vector A and diagonal
covariance matrix y,I (where ¥, is a positive constant and I is the identity matrix) then
the frequency function of |X| may be determined explicitly; namely,

g(r) = (a/'//o)(r/a)”/ze_(r”a’)/NOI(n—z)/z("'a/l//o); (1.1)

where r = |X|, a = |A4], and I, is the modified Bessel function of the first kind and order
v (see, for example, [1]).

Joint Rayleigh distributions are more difficult to compute. However, we can write
down an explicit density function under the following assumptions: Let X, , X,, -+, X,
be n-dimensional Gaussian vectors with means zero. Let Y, , 1 < j = n, the vector
composed of the jth components of the X, , have a joint p-dimensional Gaussian dis-
tribution with positive definite covariance matrix M independent of j. Let the
Y;,1 = j < n, be independent. Then if W = M™' = (wu)1sk .4 s» has the property
that wy., = 0 for |k — k| > 1, the joint density function of 7, , 7., --- , 7, where
=Xy, 1=k =Z0pis

|W 2 (n—2)/2 n/2

g(rl y T2y =00, TD) = 2(n—2)/21-\(n/2) T >  €Xp (—11),,,,7',2,/2)

p—1
X III [I’wk.kn!—("_z)/z Ty €Xp (_wkkrl2c/2)I(n—2)/2(lwk.k+ll Tk"kn)]- (1-2)
=1
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In particular, if p = 2,7, = |Xi|, 7. = | X3,

|W|»/2 (7'1”'2)”/2 . .
glry , 1) = @ Iwml)(f.—z)/zr(n/z) exp ( —[w,r + wzz”'z]/z)l(n—z)/z(lwn| iT2), (1.3)

and the condition wy = 0 for |k — k| > 1 becomes vacuous. For a derivation and
discussion of the above formulas see [6] and [1].

2. Summary of results. (i) Let v = |X,| |X,| where X, and X, are n-dimensional
correlated Gaussian vectors, and where the density function of 7, = |X,| and r; = |X,|
is given by (1.3). Then the frequency function 2 (u) of u is given by

JW l"/z ™’ 1/2. 1/2

@ lezl)(n—z)/zr(n/z) In2y/2(u lezl)Ko(u'wu W2 ), 2.1)

where K, is the modified Bessel function of the second kind and order ». See, also, [2;
page 34] for a similar formula.

(#) Let » = |X| |Y| where X is n-dimensional Gaussian with mean vector 4 and
diagonal covariance matrix y,I; and Y is m-dimensional Gaussian with mean vector B
and diagonal covariance matrix y{I. Let X and Y be independent. Then the density
function 5(») of v is given by

10 =2 ()" e | LE+ D) £ S irramra e

CATEATET RN S

where @ = |A| and b = |B|. This result can be found in [5]. (There seems to be an error
in Eq. (11) of this reference.)
(7%7) The moments of u are given by

» _ __|W]"* 2" T[n + p)/2) <n+p n+p n . wh )
u” = (W wee) “P% T3(n/2) oFs 2 72 727w, Wy 2.3)

where .F,(a, b, c; 2) is the hypergeometric function. The moments of » are given by

& = (dgodh)"” e+ 22 L 212 o [ 5 (w + b)]

hw) =

I'(n/2)T(m/2) vo
n+p n, a m+p m b
x #2525 2%) CE ’2%)’ @4

where ,F,(a, b; z) is the confluent hypergeometric function. The results embodied in
2.1), (2.2), (2.3), (2.4) are established in Section 3.

(@) Let v = |X,|/|X,| where X, and X, are the same correlated Gaussian vectors
appearing in (¢). Then the frequency function p(v) of v is given by

@) = 2 |W|”/2 v”—l(wuv2 + w,,)
por = B(n/2, n/2)[('wuv2 + W22)2 - (21)1,012)2](”“)/2 ,

(2.5)

where B(y, v) is the Beta function. See, also, [2; page 34], [7, 8], [9; page 32] for similar
formulas.
(v) Let w = |Y]/|X| where X and Y are the same vectors appearing in (¢¢) but we
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assume they are both of dimension 2n (instead of n and m respectively). Then the density
function p(w) of w is given by

o) = (=1 -2 (ﬁ) exp[ 1(¢+¢b)]

a* 22 212/ 0,2 Lab_
X dcn {é_c_ eXp [40 (a /'/’0 + w b /'po ):II”_1<2C¢0‘I/(,))} ) (2‘6)

where the above derivative is to be evaluated at ¢ = (¥3! + w*¥;™)/2. If n = 1, then
w is the ratio of two Rice variates and

ow) = 220 o (— o + 57)/[20%)

[(1 + %)Io(mxb/a’) + (wab/az)Il(wab/az)] @.7)

where ¢ = ¥, + W'Y, .
(v2) The moments of v are known:

w2 Wis V2T + ¢1/2T(n — q1/2) o(n+q n—gq n _wi
|W| / (q+n)/2 I‘(n/2)I‘(n/2) 2Fl(

2 > 2 27 w"w22> 2.8)
(for ¢ < m), see [8]. The first moment of w [Eq. (2.7)] is given by

" e[4S+ ]l 1) o

The results of (2.5), (2.6), (2.7) and (2.9) are derived and discussed in Section 4.

(viz) Let uy = 18 , U = 728, where the joint density function of r, , 7., 8, , 8 is
given by g(r, , 72)g(s: , $2) and g is defined in (1.3). Then the joint frequency function
h(u, , us) of u, and u, is given by

hu, , up) = Wln (uﬂl'z)”_l - i 1 (uluwa2>k+,
1T o3 )2) &b S k! §! T 4+ n/2)TG + n/2) 4

‘Ko i w11) K- j(uw5). (2.10)

(viiz) Letv, = 8/, v, = 83/r, wherery , 72, 8, , 8, are the same variates appearing
in (viz). Then the joint frequency function p(v, , v.) of v, and v, is given (for the case

= 2) by
4 |W|?
P, ,v,) = h—zl_:l_bg).% [v* + 2vyb° + ab® + 2av7], (2.11)
where
a = wi(l +ol3), b= 2uwlww,,

(2.12)
¢ = 3w, + vf), ¥ = wnWa(l + v?)(l + v:) - a.

(¢z) The moments of g(r, , ;) [¢f. (1.3)] are known:

(p+a)/2 n/2
2 W] T((n + p)/2)T(n + ¢1/2) ,F1<" -5 p n -; 7,1, 14:3’22). @.13)

&rirg = (n+p)/2, (n+q)/2
Wi P Pyt I'(n/2)T(n/2)
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(See [8] and [10].) The moments of h(u, , u,), of course, are given by
sutul = (&riry)’. (2.14)

The results of (2.10) and (2.11) are treated in Section 5.
Some additional miscellaneous results appear in the later sections of this paper. In
particular, a (p — 1)-dimensional density function of products is calculated in Section 6.
3. Uni-variate density functions of products. As our first example we shall compute
the frequency function of

u = |X,| |Xal, @.1)

where X, and X, are n-dimensional correlated Gaussian vectors, and where the density
function of r, = |X,| and r, = |X,| is given by (1.3). The frequency function of u is

the marginal distribution
h - < ’ u) -

Explicitly

n/2 , n/2
W2 u

h(uw) = B lwlzl)(n—z)/zr(n/z) I(n-2)/2(|wl2| u) j: g exp (_[wuf2 + ’wzzuzﬁ_z]/z) dt. (3.2)

The identity (easily derivable from [11; page 181])
© v/2
[[ememeen g = () ke, a8 >0 3.3
0

enables us to evaluate the integral in (3.2). Thus (2.1) is established.
A somewhat similar problem has been treated in [5]. Here, in our notation, the authors
consider the density function of

v = |X| Y], B4

where X is n-dimensional Gaussian with mean A and diagonal covariance matrix (equal
variances), and Y is m-dimensional Gaussian with mean B and diagonal covariance
matrix (equal variances). Thus (3.4) is more general than (3.1) in that the means are
not assumed zero and the dimensions of X and Y are not necessarily equal. However,
the authors assume that X and Y are independent. In this sense, then, their result is
less general. The density function of » is given by

10 = [ 000 & 6.5)

where g(r) is the density function of (1.1) and ¢’(s) is the density function of (1.1) with
n replaced by m, ¢, replaced by ¢} , and a replaced by b = |B|. Expanding the Bessel
functions, integrating term by term and invoking (3.3) we are led to (2.2).

By definition

s’ = f i w”h(w) du. (3.6)

If we expand I(,-z),. in (2.1), then (3.6) may be written as
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|W|n/2 © 1 (|w12|)2k+("'2)/2

o= i)~ T(n/2) I:Z-O K'T(k +n/2) \ 2

X fo w UK (uw)wis?) du. 3.7
From [11; page 388],

/; ) 2K, (z) dz = 2"‘2I‘<q—i2_—p)1‘<l:2—2> 3.8

for p*° < ¢°. This identity enables us to evaluate the integral in (3.7) and hence we
obtain (2.3).
Similarly

&° = f () dv,
0

and a direct application of (3.8) leads to (2.4). We also note that &° = & |X|” & |Y|®
and hence it is not necessary to know 7(») explicitly in order to calculate &”.

4. Uni-variate density functions of quotients. We shall now compute the density
function of

v = |Xi|/|Xe], 4.1)

where X,; and X, are the same correlated Gaussian vectors appearing in (3.1). The
density function of » is the marginal distribution

po) = [ " gt 9 d, 42)

where g(r, , 2) is given by (1.3). Explicitly

W”/z 2 © n+1 2 2 2
p@) = @ ]wml)(l"'z)ezl‘(n/Z)‘/; £ exp (=& [wiw” + Wal/2)1 (a2 /2(vE |'w12|) dt.  (4.3)

The identity [12; page 32]

[ ¢r=ene a
[}

___ ¢  TB+2241)/2 (ﬁ+2v+1 B+2+3 g)
- 97+l Brar+l ' + 1) oF 4 ’ 4 v+ 1 e (4.4)

is valid for @ > 0, o® > |c| and Re (8 + 2») > —1. Using this result in (4.3) we obtain

_ 2 |W|"* "' (n) (@ n+1 n 4w, )
PO = o w0 N2 2 2 o r )
But
1 1 =(n+
F(g i1t ;z) ~ F("Jg ;z) =1 -2g (4.6)

Thus (4.5) reduces to (2.5).

A somewhat similar problem analogous to (3.4) is to compute the density function of

w = |Y|/I1X], @7
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where X is 2n-dimensional Gaussian with mean A and diagonal covariance matrix
(equal variances) and Y is 2n-dimensional Gaussian with mean B and diagonal covariance
matrix (equal variances). Thus (4.7) is more general than (4.1) in that the means are
not assumed zero, but less general in the sense that we shall assume X and Y are in-
dependent and of even dimension. The density function of v is given by

o) = [ toreo® de, 4.8

where g(r) is the density function of (1.1) (with » replaced by 2n) and ¢’(r) is the density
function of (1.1) (with n replaced by 2n, ¥, replaced by ¥} and a replaced by b = |B|).
Using the identity [13; page 197]

j; £2n+le—cgaI“(a£)I“(ﬂ£) dE — (_l)n% [;_C e(a3+ﬂ’)/4c1—“(‘!2_€>i| (4'9)

(which is valid for Re ¢ > 0, Re p > —1) we arrive at (2.6) as the density function of w.

It is clear that p(v) [cf. (2.5)] behaves like v~ "*" for » large and hence &v, will exist
only for ¢ < n, [¢f. (2.8)]. Similarly p(w) [cf. (2.7)] behaves like w™° for large . Hence
&w is the only finite integral moment. By definition

&w = /:wp(w)dw

= f:% [5 exp (=[r* + a’)/[246]]o(ra/ ¥o) dr]

: f: 8[& exp (—[s* + b1/[2¢s])1o(sb/¥4) ds].

But this is a well known result (cf., for example, [14; page 101]). Thus we obtain (2.9).

We may also write (2.9) in terms of the modified Bessel functions of the first kind I,
and I, by using the identities

FiG3, 1;2) = e°I0(2/2),
Fi(3, 1;2) = e \Fi(—3%,1; —2) = e *’[(1 + 2)[o(2/2) + 21,(2/2)],

cf., for example, [14; pages 152 and 150].

5. Bi-variate density functions. Let us now consider the problem of finding the
joint distribution of r;s, and r,s, where the probability density function of r, , 7, , s, , s,
is given by ¢(r, , r2)g(s: , 82) and g is defined in (1.3). If we let

Uy =118, Uy = TSy, (6.1)

then the joint density function of u, , u, may be expressed as the marginal distribution
W u) = [ [ 80570 Dotu/s w/0) de d
ILVI” (uluz)n/z

= Glonp iy ), [, @7 ew (coulé + i)

X exp (_wzz[§'2 + ugg‘_z]/2)l(,,_2,/2(|w,2] ff)l(n—z)/z(l’wlzl E-lf_luxuz) d¢ dg.

Expanding the Bessel functions, integrating term by term and using (3.3) we arrive at
(2.10). Note the similarity of (2.10) and (2.2). This augments the observation made in
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[1] that the functional form of the biased n-dimensional distribution resembles that of
the unbiased (n + 1)-dimensional distribution.

The above results may be easily generalized to the case where the dimensions of the
underlying Gaussian vectors in g(r, , r.) and g¢(s, , $;) are not necessarily equal. Also
there seem to be no theoretical difficulties in generalizing (2.10) to the p-dimensional
case h(ry8, , 7282, - -+ , 7,8,) where the 7’s and s’s each have the p-dimensional distribution
of (1.2) and the 7’s are independent of the §’s.

We turn now to the problem of finding the joint density function of s,/r, and s,/r,
where 7, , 72, 81, S; have the same significance as in (5.1). Let

v =8/, vy = 8/Ts . (5.2)

Then the joint density function of », and v, may be expressed as the marginal frequency
function

P, ,v5) = fo f £cgE, Hgltvy , tvo) dE dg

n/2 ®  po
T @ ILUPTDE;?)(%/m f ./; €™ exp (—wuf[1 + 011/2)

X exp (—wet’[1 + 031/2)] a2y 2([Wia| EOI n-ay 2|12 V.0:F) dE d. (5.3

The identity of (4.9) will enable us to evaluate the integral with respect to ¢ in (5.3)
for n even. The resulting integral with respect to ¢ then poses no difficulties.
Let us explicitly compute p(v, , v;) for the case n = 2. From (5.3)

p o) = WP [ [ G0 ep (—w,87L +011/2) exp (—wni®l +121/2)

X Io(lwle Eg')lo(lwle vw£¢) dE d§ (5.4)
and from (4.9)

f £ To(at)o(8Y) dt = iz [(1 + 2 re )Io(‘;'i) +% Il( ‘3)] @pnse (5 5)

The integration with respect to £ in (5.4) may now be performed with the aid of (5.5).
There results

0 = L2 [ [(#+ 2 e)n(3) + Loer (2 Vg, 6o

where a, b, ¢, v are defined by (2.12). Equation (4.4) may now be used to evaluate the
integral of (5.6). We thus obtain

2 2 2
P(Ul ,vz)=i‘l%v_2|:1Fo<§'b_>+3bleo<5 b)+2 2F1<3, ,h%):l' (5.7)

27 4°
But

3 3 3
(G2 150) = (G i0) + § oG 52),

Fo(6;2) = 1 =27, o] <1
Hence (5.7) reduces to (2.11).
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As a further possibility one might consider the joint distribution of », and ¢, = v;!
[¢f. (5.2)]. Note that the numerator of v, is correlated with the denominator of ¢ and
conversely. However, it is easily seen that the joint density function of », and ¢, has the
same form as (5.3) and hence no new results will appear.

6. Higher order distributions. Let X, ,1 < k = p, be the n-dimensional vectors
described in Section 1. That is, if r, = |X,|,1 < k < p, theng(r, , 75, -+, r,) is given
by (1.2). We shall compute the (p — 1)-dimensional density function of

Tl y Tolz y = 3 Telkar 5 * 00 5 Tp=alyp o« (6.1)
Let w = r, and
U = TiTrsr 1=k=p-—1. 6.2)
Then the joint frequency function of w, w, , w2, -+ , u,-; is given by
p—1 -1
h(u, Uy yUs y * 0, up—l) = [;Il rk] 9(7'1 s T2y 200, Tn)~ (6'3)

For convenience we shall assume first that p is odd, say p = 2¢ + 1. This restriction
will be removed later. In this case (6.3) becomes

W n/2 un—l n/2 q
— a 1,,2 2
B(u, Uy , Uz, =+ 5 Usg) = 2(n—2)/211(n/2) exXp | —3U iZo Wajs1,27+107

[ 2q
X exp ["%’“_2 Z wzi,Ziﬁ;zugi:l kH Iwk.k+1|_(”_2)/2 I a2y /2([We, a1 | i) (6.4)
i=1 =1
where we have introduced the notation
Bo =1, B; = Huzi/u2i—l ) 1=j=q,

i=1

so that

IIA
.
IIA
_

. . S P |
Toje1 = UB; , 0=7=¢ Te; = U P Ui, 1

The distribution we desire is now the marginal density function
My o) = [ B ) du (6.5)

An application of (3.3) yields

n/4
-2 2

a
lWln/z n/2 Z Waj,2:87 Uz;

=1
hu, , uy , --- ,uza) = 2("_2’/21‘(7;/2) 0 ,
Z Wa;+1,2i+185

i=0

q Q 1/2
-2,2 2
X Kn/2<|: Z Z Waj,2iWois1,2i+18; Biu2i] )

i=1 1=0

2¢
X H Iwk.k+1|_(n_2)/2 I(n-2)/2(|wk.k+l| U). (6.6)
k=1

Suppose now p is even. Then the density function of u, , 42, + ++ , %z, is the marginal
frequency function
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h(ul yUz 5 =, uza—l) = /; h(ul y Uz y =00y uza) duza . (6'7)

But (6.6) may be written as

n/2

a <u—‘y¥?7“ I a3 /2(bU2) K o o(alti3, + €177 6.8)

where @, b, ¢, o are independent of u,, . The identity [11; page 416]
f 1 (O)K..5(alt’ + ¢*T) ot = (é)wK (cla® + 1) (6.9)
o (n—2)/2 n/2 (t2 + c2)n/4 b a 0 .

then enables us to evaluate hA(u;, , us , -+ , Uze—1). Of course, one can also start with
(6.3) directly and assume p even.
An attempt to find the joint density function of

Q & Tk+1 7',, 6 10
) ) T y T ) ( . )
Ty Ty Tk Tp—1

where the 7,’s are as in (6.1) does not seem to lead to a closed form expression.
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