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—Notes-
eigenvalue BRANCHING CONFIGURATIONS AND

THE RAYLEIGH-RITZ PROCEDURE*

By J. M. T. THOMPSON (University College, London)

Summary. A general theory of elastic post-buckling, applicable to a wide class of
structural eigenvalue problems, is developed in generalized coordinates. Attention is
restricted to the initial post-buckling path of the structural system on a plot of the load
against the critical principal coordinate, and exact first-order solutions for the path are
presented. These solutions are compared with the predictions of the non-linear Rayleigh-
Ritz analysis in which the linear buckling mode is employed as the assumed form, and
theorems concerning the results of this analysis are established.

It is seen that the Rayleigh-Ritz analysis will always yield the correct initial slope
for the post-buckling path, and that when this slope is zero the analysis will supply an
upper bound for the initial curvature. For 'symmetric' systems it is further shown that
the Rayleigh-Ritz analysis will always yield the correct initial curvature, while if the
curvature is zero the analysis will supply an upper bound for the fourth derivative.

1. Introduction. Experience with thin shell structures has indicated [1] that on
encountering any new buckling problem in this field, an attempt must be made to assess
the post-buckling characteristics of the structural system. If the load-carrying capacity
of the idealized structure is observed to fall as the buckling deformation develops, the
lowest critical load may represent a poor and unsafe estimate of the stability limit of a
practical imperfect structure.

A quick and reliable procedure for examining the initial post-buckling behaviour
of a structure is clearly required, and one such procedure has been developed by Koiter
[2, 3]. This method makes use of the presumably known linear buckling mode, and may
involve the solution of a set of linear equations to determine the small initial changes in
the buckled form.

A simpler procedure, which however yields less detailed information about the
initial post-buckling path, is to use the known linear buckling mode as the assumed form
in a non-linear Rayleigh-Ritz analysis. Theorems concerning the results of this procedure
are established in the present paper.

A general theory of elastic post-buckling, applicable to a wide class of structural
eigenvalue problems is first developed in generalized coordinates, following the lines
of an earlier study of elastic instability [4], First-order solutions are established for the
initial post-buckling path of the structural system, and these are subsequently compared
with the results of the non-linear Rayleigh-Ritz procedure.

The explicit first-order solutions for the post-buckling path are entirely new, but
it should be noted that the theorems concerning the Rayleigh-Ritz procedure are con-
tained implicitly in the more-general theory developed by Koiter [2, 3].

2. General remarks. The sensitivity of the stability limit of an eigenvalue buckling
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system to initial perturbations is largely determined by the post-buckling character-
istics of the idealized perfect system. Thus if no 'small-deflection' post-buckling equi-
librium states exist at loads less than the critical load, initial imperfections will usually
be insignificant. If on the other hand a post-buckling path emerging from the first
branching point yields 'adjacent' equilibrium states at loads less than the critical load,
initial inperfections can be expected to yield a marked lowering of the stability limit.
The rate at which the load-carrying capacity of the structure decreases along this path
will moreover be significant in determining the precise sensitivity of the stability limit.

It is clear from the above remarks that the initial post-buckling behaviour of a
structure is of considerable practical importance. If, moreover, the first critical load is
discrete, it is apparent that the first-order solution of the corresponding post-buckling
path will be of primary interest. Considering the path on a plot of the load against the
critical mode amplitude for example, interest will focus in the first instance on the initial
slope, while if the slope is seen to be zero, interest will be transferred to the initial
curvature.

The theorems of the present paper are restricted to eigenvalue problems exhibiting
discrete critical loads, and in the light of the preceding remarks are concerned with the
first-order solutions of the initial post-buckling path.

Many structural systems are designed with a high degree of symmetry, and, if the
symmetry is preserved by an appropriate choice of coordinates, the post-buckling paths
of these systems will consequently be symmetric about the load axis. Two theorems
applicable exclusively to a class of symmetric systems are presented, the value of these
theorems lying in the fact that the required symmetry of a system can usually be estab-
lished by a preliminary inspection.

3. Structural system. The general analysis and theorems of the paper are con-
cerned with the post-buckling behaviour of any elastic structure that yields a well-
behaved eigenvalue buckling problem under the influence of a single generalized conserva-
tive load. An energy formulation capable of describing any such structural system is
developed in the present section.

It is assumed that the deformations of the elastic structure can be analysed into
mode-forms, the amplitudes of which will supply a set of generalized coordinates for
the structure. It is further assumed that the behaviour of the structure can be described
satisfactorily by the use of a large but finite number of coordinates.

Considering then a finite set of n generalized coordinates, g; , the strain energy of
the structure can be represented by a single-valued function, U(qt), of these coordinates.

Introducing now a generalized displacement represented by the single-valued function
E(q%), we shall suppose the structure to be loaded by a dead generalized conservative
force of magnitude P acting on this displacement, as shown in the schematic diagram
of Fig. 1. The total potential energy of the structural system can thus be written as
V = U{q<) - PE(Qi).

We suppose further that the structural system yields a well-behaved pure eigenvalue
problem with the trivial undeformed equilibrium state, q{ = E(0) = 0 for all values
of P. Then we can expand the functions U(qi) and E{qt) as power or Taylor series in the
generalized coordinates as follows,

U(qt) = §wi„g,g,- + K + • • • , ^
E(qd = hSaQiQi + f ft,-,*?,?,?* + • • • .
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Fig. 1. Structural system.

Here the dummy suffix convention is employed with all summations ranging from 1
to n: the coefficients are constants for a given system, and the sets of coefficients are
assumed to be symmetric in the sense that nijk = nkji = nUk etc.

The quadratic form of the strain energy being positive definite, the quadratic forms
of f7(g,) and E(su) can be simultaneously diagonalized by means of a real non-singular
linear transformation of coordinates. If the new (principal) coordinates are m, , we then
have

U = iUiUf + iNi^UiUjU, +

E = + \HiikUiUiUk + • • • ,

where the positive-definite quadratic form has been normalized. The new coefficients,
Gi , Nijk, etc., are functions of the previous coefficients, mu , gu , etc.

The total potential energy of the system can now be written as

V = V(P, u%) = U(y,i) - PE(Ui).
Thus, focusing attention on the trivial loaded equilibrium state defined by P = P0 ,
1i — Ui = 0, and introducing the new symbols,

V = P ~ Po ,

C, = 1 — PoGi ,

Diik = Nijk — P0Hiik , etc.,

we can finally write the total potential energy function in the form,

V = + }D,iku,u,uk + • • •) + | HiikUiUiUk +•■■)• (3)

Equilibrium states of the system are defined by the n equations <)V/du, = 0, and
the critical loads are given by the n equations,

C,- = 1 - PoGt = 0,
that is to say, the critical load associated with the principal coordinate u, is given by
P, = 1 /Gt .

We shall assume that the critical loads are discrete, so that Pi ^ P,- for i ^ j, and
we shall restrict attention to the first branching point at which the initial stability of
the structure is lost.

Assuming then that Pi = l/G^ is the first critical load, we shall set P0 = Pi , so
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that p = P — Pi . The critical principal coordinate is thus ux , and at the branching
point under consideration the associated stability coefficient is zero, while the remaining
stability coefficients are all positive; that is to say, Ci = 0, while C, > 0 for s 5^ 1.

The system formulated above and considered in the present paper represents a pure
eigenvalue problem, in which the structure suffers no pre-buckling deformation. An
example of such a problem is provided by an Euler strut, or by a combination of struts
for which the axial flexibilities can be neglected a priori. Since many buckling systems
of practical interest do not yield pure eigenvalue problems, an important generalization
of the present analysis will be briefly considered.

Starting again with the structural system of Figure 1, a Taylor expansion of E(q{)
about the unloaded state will in general contain linear terms, these terms giving rise
to pre-buckling deformations. If the corresponding "fundamental" equilibrium path is
given by the single-valued relationships g,- = qi0 (P), we can now define changes in the
coordinates by the equations Aq{ = qi — qi0 . Defining further a change in the total
potential energy

AV = AU — PAE
- [t%,) - U(q{0)] - P[E(q<) - E(qi0)],

this change can finally be expanded as a Taylor series in the Aq{ and in p = P — P0 .
The linear terms of AU and AE cancelling out, this expansion will contain no linear
terms in the Aq, ; and it will in general be non-linear in p.

Focusing attention on the first point of bifurcation by equating P0 to the critical
value of the load, we can now linearize AV with respect to p, assuming the point of
bifurcation to be well-behaved. Diagonalizing simultaneously the remaining two quad-
ratic forms, the expansion of AV can finally be written in the form of Eq. (3). It follows
that the analysis of the present paper is readily generalized to cover systems exhibiting
pre-buckling deformations.

4. Initial post-buckling path. We wish now to study the behaviour of the structural
system in the vicinity of the first critical equilibrium state. That is to say, we wish to
obtain a first-order non-linear solution of the equilibrium equations dV/dUi = 0, that
is correct in the immediate vicinity of this state.

4.1 Preliminary analysis. In the region under consideration it is clear that p and
all the Uf will be (vanishingly) small, and that along the initial post-buckling path the
critical principal coordinate, ux , will be large in comparison with any other principal
coordinate, us , where s ^ 1.

Thus since C1 is equal to zero, and since Gr1( = 1/Pi) is necessarily non-zero, the
equilibrium equation dV/dUi = 0 can be written in the form

p/u 1 = dDujUiUj + %EUSkUiU{uh + • • -)(1 + 0)/Gxul . (4)

Here and subsequently f} is used to represent any expression that vanishes in the limit
as p tends to zero, and the coefficients EUjk are understood to arise from the first series
of equation (3).

Further, since C, 5^ 0 for s ^ 1, the equilibrium equation dV/dus = 0 can be written
in the form

u./ul = - {(|D.ijUiUf + {Esiikuxutuk +•••)- p(\ihiP-hUi + •••)}(!+ 18)/C.u\ (5)

for all 8^1.
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1+.2 Initial slope. An expression for the initial slope of the post-buckling path is
readily derived.

Thus from equation (4) we can immediately write

lim (p/uj = Dlll/2Gl ,
p—*Q

so writing Dx = fl„, , we have in all circumstances,

dP/du! = D1/2Gl . (6)

Here and subsequently it is to be understood that derivatives refer to the post-buckling
path at the branching point.

Since, in a mathematical sense, is "in general" non-zero, it is seen that a "general"
eigenvalue branching configuration will exhibit a finite initial slope on a plot of the load
against the critical principal coordinate. Such a branching configuration is associated
with an "exchange of stabilities" [3, 4] as indicated by the two configurations of Fig. 2,

D,yo

X D,<0

"/
Fig. 2. General eigenvalue branching configurations (Di ^ 0).

in which a stable path has been represented by a continuous curve, an unstable path
by a broken curve.

An Euler strut constrained laterally by a non-linear spring [5], and certain rigid-
jointed triangular frames [6] exhibit branching configurations of this type.

4-3 Initial curvature. When the initial slope is zero, interest focuses on the initial
curvature. We shall thus derive an expression for the curvature under the condition
that Di = 0.

From equation (5) we have

uju\ = -D./2C. + 13
for all s ^ 1, where D, = D,u . Then substituting for u, in equation (4) and setting
Di = 0 we have finally

p/u\ = (p\ - ± DM0^/20, + 0,
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where Ex = £ul, . Thus in all circumstances for which the initial slope is zero, we have

d'P/dul = (iE, - £ Dl/C^/G, . (7)

Denoting the right-hand side by T, we see that T can be either positive or negative,
giving the two "non-general" branching configurations of Fig. 3.

r> o

s T<0

ul

Fig. 3. Non-general eigenvalue branching configurations (Di = 0).

When the curvature is positive, the rising paths are stable [3], an example of this
behaviour being the unconstrained Euler strut. When the curvature is negative the
falling paths are unstable, and an example of this behaviour is provided by the axially
loaded cylindrical panel [7].

4-4- Symmetric system. In many problems of practical interest, the structure and
its loads are completely symmetric, so that in a symmetric coordinate system the Taylor
expansions for E and U will contain no odd terms. The energy expansion of equation
(3) will likewise contain no odd terms, so the coefficients, D, F, ■ ■ ■ , and H, J, , will
be identically zero. We shall now examine the initial post-buckling behaviour of such
a symmetric system.

Since Di is now identically zero, we see from the previous result, which is of course
still applicable, that the initial slope is zero. That is to say, dP/dUi = 0, a result which
is apparent from the assumed symmetry. Moreover, since all the D coefficients are
identically zero, we have from equation (7),

d°P/dul = EJZG, . (8)

The third derivative is zero from the assumed symmetry, and we shall proceed
to evaluate the fourth derivative under the condition that the curvature is zero.

When the system is symmetric, Eq. (5) reduces to the form

«./«? = -E./6C. + 13
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for s ^ 1, where E, = Eslll . Then substituting for u, in Eq. (4) and setting Ex — 0
gives finally,

d'P/dut = - 2 2 E]/c)j/Gx , (9)

which is valid for a symmetric system when the initial curvature is zero. Here Gn =
Gxiiiu , the latter being understood to arise from the first series of Eq. (3).

5. Rayleigh-Ritz solutions. Let us now examine the solutions that would be ob-
tained for the initial post-buckling path by the use of the Rayleigh-Ritz energy method.
It is assumed that the method is used in the context of an appropriate non-linear energy
formulation, and that the critical eigenfunction is used as the assumed form, the ampli-
tude of this function being the only free parameter of the analysis.

The energy function, V(p, w.) of Eq. (3), is contained implicitly within the non-
linear energy formulation, and the assumed form corresponds to the critical principal
coordinate Ui . The energy function of the Rayleigh-Ritz analysis can thus be obtained
by setting u, = 0 for s ^ 1 in Eq. (3), and the single equilibrium equation of the analysis
can then be obtained by setting dV/dUi = 0.

It follows immediately that the Rayleigh-Ritz post-buckling solution is given by

JP_ hDi + §EiUi + • • • ,ins
«i G1 + 1W1 + • • • '

from which the corresponding first-order solutions are readily derived. These first-order
solutions can in fact be obtained from the exact solutions by equating to zero all energy
coefficients containing a subscript s, where s ^ 1.

Since Gx is necessarily non-zero, Eq. (10) indicates that p will in all circumstances
vanish with ux . As is well-known, the proposed Rayleigh-Ritz analysis will thus yield
the correct critical load.

The Rayleigh-Ritz solution for the initial slope is seen to be £\/2G, , which agrees
with the exact solution of Eq. (6). The Rayleigh-Ritz procedure will thus yield the cor-
rect initial slope for the post-buckling path in all circumstances.

When the initial slope is zero, the Rayleigh-Ritz procedure gives the solution EXI?>GX
for the initial curvature, which corresponds to the first term of the exact solution of
Eq. (7). Moreover, since we are considering the first critical load for which Cs > 0 for
s ^ 1, we see that the second term of Eq. (7), ^2 Dl/C, , can never be negative. Thus
since Gi is necessarily positive, we see that, when the initial slope is zero, the Rayleigh-
Ritz solution will yield an upper bound for the initial curvature.

In a similar manner it is readily seen that for a symmetric system the Rayleigh-
Ritz procedure will always yield the correct initial curvature, and that when the curvature
is zero the procedure will yield an upper bound for the fourth derivative.

6. Conclusions. The results of the paper concerning the Rayleigh-Ritz procedure
can be summarized in a formal manner as follows.

An elastic structure subjected to a single generalized conservative load is considered.
It is assumed that the behaviour of the structure can be described satisfactorily by a
large but finite number of generalized coordinates, and that with the use of these coordi-
nates the structural system yields a well-behaved eigenvalue problem lying within the
general formulation of Sect. 3. It is assumed that the critical loads of the system are
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discrete, and attention is restricted to the first branching point, at which the initial
stability of the structure is lost.

As a special case a symmetric system is considered, for which, with an appropriate
choice of coordinates, the strain energy and the deflection of the load are both even
functions of the coordinates. The structure of such a system will encounter identical
conditions as it buckles in either of the two possible directions, and the post-buckling
paths will consequently be symmetric about the load axis.

It is assumed that the linear eigenvalue problem has been solved exactly, so that the
linear buckling mode is known, and that an estimate of the initial post-buckling behaviour
of the structural system is required. For this estimate, the linear buckling mode can be
used as the assumed form in a non-linear Rayleigh-Ritz analysis.

Restricting attention to the branching conditions on a plot of the load against the
amplitude of the linear buckling mode, the following results have been established.

Theorem 1. The non-linear Rayleigh-Ritz analysis employing the linear buckling
mode will yield the correct initial slope for the post-buckling path under all circumstances.

Theorem 2. When the initial slope is zero, the non-linear Rayleigh-Ritz analysis
employing the linear buckling mode will yield an upper bound for the initial curvature
of the post-buckling path.

Theorem 3. The non-linear Rayleigh-Ritz analysis employing the linear buckling
mode will yield the correct initial curvature for the post-buckling path of a symmetric
system.

Theorem J+. When the initial curvature is zero, the non-linear Rayleigh-Ritz analysis
employing the linear buckling mode will yield an upper bound for the initial fourth
derivative of the post-buckling path of a symmetric system.
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