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4. Generalizations. The results for the wave equation can easily be generalized
to include the inhomogeneous wave equation

cV2w = § + F (4.1)
ot

together with the mixed boundary-conditions

u=U on B, X (0, »), ^ = F on B2 X (0, «,) (4.2)

and the initial conditions (2.2). Indeed, all one has to do is add the terms

(2/<? f g * F * u(x, t) dx — 2 f g * V * u(x, t) dx (4.3)
J R J B,

to the right hand side of (2.10) and require that K be the set of all functions u which
satisfy u = C/ on X (0, <»). The analogous assertion applies to the heat conduction
problem.
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WAVE OPERATORS AND ABSOLUTELY CONTINUOUS SPECTRA*

By C. R. PUTNAM (Purdue University)

1. On a Hilbert space § of elements f, g, ■ ■ ■ , with inner product (/, g), let { Z?(A)},
— °° < X < co, denote a one-dimensional spectral family. If £>„ denotes the Hilbert
space spanned by the set of elements / for which ||i?(X)/||2 is a absolutely continuous
function of X, then §a reduces the family {7?(X)} and will be called the absolutely con-
tinuous part of § determined by the spectral family see Halmos [1], p. 104,
Kato [5], p. 240, Kuroda [6], p. 436. In the case of a self-adjoint operator II or a unitary
operator U, there exists in each instance a spectral family \E(\)} for which

H = f X dE(\) or U = f2T eiX dE(\). (1)
J — co J 0

The restriction of H (or U) to the corresponding space will be called the absolutely
continuous part of H (or U). The operator H or U will be called absolutely continuous
on a subspace 9J! of § if 3)? C •

If 9JJ is a subspace its orthogonal complement in § will be denoted by The
space iQ, = is spanned by the singular elements. Thus, if / is in £>„ and if / ^ 0,
then the absolutely continuous part of the monotone function ||I?(X)/||2 in the Lebesgue
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decomposition is absent, that is, the total variation of ||i?(X)/||2 occurs on a set
of Lebesgue measure zero.

If SDi is a linear manifold of § its closure will be denoted by [93?]. If A is an operator
its domain will be denoted by £u and its range by .

Let H0 and V denote self-ad joint operators and suppose that

H, = H0+V (2)

is also self-adjoint. For instance, if V is bounded, its domain is §, and so H, is surely
self-adjoint with domain identical to that of H0. In the terminology of scattering theory,
H0 and Hi correspond respectively to the free and total Hamiltonians, while V is the
interaction potential; see Jauch [2], p. 134, Jauch and Zinnes [3], p. 555.

2. It will henceforth be supposed that H0 and Hi are unitarily equivalent, so that
there exists some unitary operator U for which

//i = UH0U*, or equivalently, l?i(X) = UE0(\)U*, (3)

where
/» CO p CO

H0 = J XdE0(\) and IIX = j X dEJX). (4)

It is known that under certain hypotheses on H0 and V the strong limits

U+ = lim U, and U- = lim Ut , where U, = exp (itHx) exp (—itH0), (5)
t—* 00 t—»— 00

exist, are unitary, and satisfy

Hr = U+U0U* and Ht = U-H0U* ; (6)
see [7] for references to Friedrichs, Kato, Kuroda, Rosenblum, et al.

There will be proved the following theorem, which is a generalization of a result
in [8]:

(I) Let H0 and V be non-negative self-adjoint operators and suppose in addition that
V is bounded, thus

Ho > 0, 0 < V < JcKk = const. > 0). (7)

Suppose that i?i is defined by (2) and that (3) holds for some unitary operator U. Let F
denote the smallest subspace of § reducing U and containing 9?F . Then U is absolutely
continuous on T, that is,

r C $.(E7). (8)

In case V is a perturbation of rank 1, it can be supposed that

0 < V < kl. (9)
It follows from (I) that if .Ho is half-bounded, if V is a one-dimensional perturbation,
and if H0 + y = UH0U* holds for some unitary U, then U must have an absolutely
continuous part. The corresponding assertion is clearly false for finite dimensional
perturbations of rank different from 1, as can be seen by examples with finite matrices.
Moreover, in this case, a simple trace argument shows that (3) and (9) cannot hold
unless k = 0.
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See Kato [5] who considers finite dimensional and, in some detail, one-dimensional
perturbations of arbitrary (not necessarily half-bounded) self-adjoint operators.

3. Let En denote Euclidean n-space and let H0 denote the unique self-adjoint ex-
tension of the symmetric operator —A on L2(En), where Au = ^".i d2u/dxl ; see
Kuroda [6], pp. 443-444 and Kato [4], Then H0 has the spectrum [0, <=°), hence //„ > 0,
and, in addition, H0 is absolutely continuous, that is (cf. (4)), &a(H0) = §. In case
n = 1 so that V = V{x) is a one-dimensional multiplication operator satisfy-
ing 0 < V(x) < k (k = const. > 0), then (7) holds and Hl of (2) is self-adjoint with a
spectrum contained in [0, °°). Under certain restrictions on V (x), Hx is also absolutely
continuous with the spectrum [0, <») and (6) holds where U+ and U - are unitary opera-
tors satisfying (5).

For instance, if n — 1, so that

H0 = -<f/dx2 on $ = L\- o=, o»), (10)

this situation holds if V (x) satisfies

0 < V{x) < k and f V(x) dx < . (11)
J — oo

Furthermore, in this case, if V(x) satisfies the second relation of (11) and also

0 < V(x) < k (12)

almost everywhere, then the closure of is the entire space §. For this case, considered
in [8], T = §, and so

= ©, d3)
for each of the (unitary) wave operators U = U+ and U = U- .

It was shown in [7] that the additional hypothesis

lim inf b~3 V~1(x) dx = 0 as b —> v>(ba fixed) (14)

even assures that, for any unitary U for which (3) holds, in particular for the wave
operators,

the spectrum of U is the entire circle |z| = 1. (15)

It can be remarked that even for arbitrary n, if V is a radial potential, so that V = V (r)
with r = (x\ + • • • + xl)1'2, which satisfies (12) and (14) with x = r, then, whenever
(3) holds for some unitary U (for instance, but not necessarily, by virtue of (6) in case
U+ and U- exist and are unitary), necessarily (13) and (15) hold. The sufficiency of
(14) for (15) in case V — V(r) can be proved by methods similar to those used for the
case n = 1.

4. In general, the relation (8) cannot be improved to

r = &([/). (8')
In fact, if V = 0 then T = 0 and (3) holds for any unitary U commuting with II0 ( = Hi).
In particular, such a unitary operator may be absolutely continuous. In the trivial
case with H0 = I ( = Hi), relation (3) even holds for every unitary U. Another example
is furnished by the absolutely continuous operator H0 of (10); in this case U = exp (iH0)
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is absolutely continuous and commutes with II0 . On the other hand, for the case V = 0
considered above, each of the wave operators U = U+ and U = U- exists and is the
identity I. Hence, in this case, (8') does hold for U = U+ and Z7_ , since r = £>„(/)
is the space consisting of the element 0 only.

If 0 denotes the smallest subspace reducing H0 and containing , then also 0
reduces Hi (see Kato [5]), hence also the wave operators, and so r C ^ Moreover,
it is clear that the restriction of U+ and E/_ to is the identity operator. As a conse-
quence of (I) there follows the theorem

(II) If, in addition to the hypotheses of (I), the wave operators U+ and TJ- of (5) exist
and are unitary, then U = U+or U=U- has the direct sum representation

u = U1 © Ua © I on ® = r © (Q © r) © fix(£7 = U+ or U.), (16)

where TJ\ is absolutely continuous. In the special case when T = 0, relation (16) can be
refined to

U = Ua® I on § = 0 © (U = U+ or C7_), (16')
where Ua denotes the absolutely continuous part of U.

It will remain undecided whether either or both relations (8') and

r = 2 (17)

must always hold if U = U+ or £/_ . In the examples given earlier, with II„ defined by
(10) and U=U+ovU=U-, then r = fi = 0 when V(x) =0 and r = 0 = § when
V(x) > 0. By considering direct sums of Hilbert spaces, it is easy to construct examples
for which both (8') and (17) hold for the wave operators, but where T is a proper sub-
space of

5. Proof of (I). The proof will depend upon a modification of the argument given
in [8]. Let U have the spectral resolution

U = e'x dE(\), (18)
*'o

and let F(X) be a real-valued function of period 2x with a continuous first derivative
and possessing the Fourier series

F(\) = £ cteax = Co + £ cke<k* + £ ckeik. (19).
-co 1 -1

Since F(\) is real, c_k = ck , and so

F = c0 + F+ + F+, where F+ = £ ckeik\ (20)
1

If / is arbitrary and if g is in £)#„ , then

(£' F+(\) dE(\)g, V1/2f) = ( E ckV1/2Ulcg, /), (21)

and hence, if h = V1/2f and a(\) = (E(\)g, h) (cf. [8], middle of p. 845),
I r2r / co \ 1/2

|| F+(X)rf<r(X) < ll/H (E \ck\2) (Hog,gr\ (22)
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If the factors of the inner products of (21) are interchanged one obtains a relation
corresponding to (22) but in which tr(X) is replaced by its conjugate. Since a complex
number and its conjugate have the same absolute value, it follows that (22) remains
valid if F+(\) is replaced by F+(X). It then follows from (20) and (21) that

x / cn \ 1/2

| F(\) da(\) < |co[ \\Vi/2f\\ \\g\\ + 2 |[/|| |c*|2J (.H0g, g)l/\ (23)

Hence,

f F(\) d{E{\)g, h) 2 < C(j, g) f" F\\) d\, (24)
.*0 Jo

where C(f, g) is a number depending on / and g but not on F(\). It follows that (E(\)g, h)
is absolutely continuous whenever g is in 0ffo and h is in dtVi/2 ■ Since SOHo is dense in
then (E(\)g, h) is absolutely continuous for all g in >S3 and h in divl/2 and, in particular,
||2?(X)/i||2 is absolutely continuous for all h in Sflvi/2 • Since [dtvi/2] =

||£(X)/||2 is absolutely continuous for all / in [SRr], (25)

If g = Uf then, by (18),

\\E(\)g\\2 = f"d ||£(m)/||2, 0 < X < 2r,
Jo

and so ||iJ(X)gf||2 is absolutely continuous whenever |[iJ(X)/||2 is. Similarly, the absolute
continuity of 11^7(X)/||2 implies that of ||i?(X)gf||2 whenever g = Unf (n = 0, ±1, ±2, • • •).
Consequently, ||Z?(X)/||2 is absolutely continuous for all / in the closure of the linear
manifold of finite linear combinations of elements fnm.'SiUnv ■ Since the set of such ele-
ments / is clearly the space r, that is, the smallest subspace reducing U and containing

, the proof of (I) is complete.
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