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THE VIBRATIONS OF A RANDOM ELASTIC STRING:
THE METHOD OF INTEGRAL EQUATIONS*

By BRUCE E. GOODWIN** (University of Maryland),
and WILLIAM E. BOYCE (Rensselaer Polytechnic Institute)

Abstract. The theory of Fredholm integral equations is applied to the problem
of determining the natural frequencies of transverse vibrations of a tightly stretched
elastic string whose mass per unit length varies with position in a stationary random
manner. Upper and lower bounds for the statistical moments of the frequencies are
given in terms of corresponding moments and appropriate correlation functions for
the random linear density. The adequacy of the bounds decreases for the higher fre-
quencies. Extensions to more general random boundary value problems are also indicated.

1. Introduction. The boundary value problem governing the free transverse
vibrations of a tightly stretched elastic string having both ends fixed can be written in
the form

U" + A(1 + A)U = 0, [7(0) = 17(1) = 0, (1)

where U is the dimensionless transverse displacement, A = A(x) is proportional to
the random deviation of the linear density from its mean value at the point x, and X
is a parameter proportional to the square of the natural frequency. We assume that
A(x) is continuous, although this requirement can be relaxed, and that 1 + A > 0.
Under these circumstances the eigenvalues \h , ordered in increasing size, are all real
and positive.

It is convenient to introduce the Green's function T{x, y) for the differential operator
U" subject to the given boundary conditions. Then

n», y) - j*(1 - #)' (2)
1.2/(1 - x), 0 < y < x < 1,

and the boundary value problem (1) is converted into the integral equation

U(x) — X f T(x, 2/)[l + A(y)]U(y) dy = 0, 0 < x < 1. (3)
Jo

With the new dependent variable u = (1 + A)1/2U, the integral equation (3) becomes

u(x) — X f K{x, y)u(y) dy = 0, 0 < x < 1. (4)
J 0
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Equation (4) is a homogeneous Fredholm integral equation of the second kind with
the positive symmetric kernel

K(x, y) = T(x, y)[ 1 + A(x)]W2[l + A(y)]1/2. (5)

The eigenvalues XA of Eq. (4) are the same as those of Eqs. (1), and the corresponding
eigenfunctions uh(x) may be considered to be orthonormalized. If the iterated kernels
Km(x, y) are defined by

Kiix, y) = K(x, y),

Km(x, y) = f K(x, z)Km-1(z, y) dz, m = 2, 3, • • • , (6)
Jo

they admit the uniformly convergent eigenfunction expansions

Km(x, y) = f: m= 1, 2, ••• . (7)
fc=l

Upon setting y = x in Eq. (7) and integrating over the unit interval, we obtain the
fundamental relations

2 = [ Km(x, x) dx, m = 1, 2, • • • . (8)
h = l Jo

2. The determinate problem. Equations (8) may be used in a simple way [1] to esti-
mate the eigenvalues of the boundary value problem (1), or the integral equation (4),
in the event that A (x) is determinate. Thus

= f Km(x, x) dx — (9)
Jq h = 2

and an upper bound for A7™ can be immediately obtained by dropping the infinite
series on the right side of Eq. (9). This result can be improved, and lower bounds ob-
tained as well, provided crude bounds on \h are already available from another source,
such as a simpler version of the same problem. For example, if |A| < 5 < 1, elementary
comparison principles [2] yield the inequalities

(1 - 5)(/itt)-2 < A:1 < (1 + 5)(M~2 • (10)

Introducing these into Eq. (9), we obtain

(1 - d)m £ (M"2" < f Km(x, x) dx - \rm < (1 + 6)m (hir)~2m. (11)
/i = 2 * 0 h-= 2

The series 22°-1 (hir)~2m can be summed in closed form [3] and in particular, for to = 1,2,

E (for)"' = f, E (M"4 = (12)
A=1 h=1

Thus we have the sequence of inequalities

(1 - «)(* - tt"2) < f1 K(x, x) dx - Ar1 < (1+ S)(i - tt"2), (13)
Jo

(1 - 5)2(¥V - TT-4) < f1 K,(z, x) dx - xr2 < (1 + <5)Vo - tt"4), • • • . (14)
J 0
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Even for m = 1 these bounds are markedly superior to those given by Eq. (10), and
they can be improved further by using larger values of to, although the successive
iterations will prove tedious for most kernels. The extension of the procedure to higher
eigenvalues is obvious, at least in principle.

3. The random problem. The main result of the present section is the observation
that, in the event that A (x) is a random function, Eqs. (8) also yield information con-
cerning the statistical moments of X71 in terms of appropriate assumptions about the
statistical properties of A (x). We will denote the mathematical expectation, or mean,
of a random variable £ by (|). Let us assume that A (x) is a stationary random function,
and that

(^(x)) = 0, 0 < x < 1, (15)

(A(x)A(y)) = ti2p(x - y), 0 < x, y < 1, (16)

where, due to the stationary character of A{x), /x2 = (A2) is constant, and the correla-
tion function p depends only upon x — y, and not upon x and y separately. As a result
of Eqs. (13) and (14) we have

K(x, x) dx^ -a- T~2) - (xr1)] < «(i - O, (17)

K2(x, x) dx^ - (1 + 52)(^r - tt-4) - <\r2) < 25(A - O- (18)

Recalling that K(x, x) = T{x, x)[l + A(x)], we see that

K(x, x) dx^ = J T(x, x) dx — |. (19)

Similarly,

so that

K2(x, x) = f1 T\x, y)[ 1 + A(*)][l + A{y)} dy,
•'O

^ K2(x, x) dx^ = fo Jo T*(x> V)\X + (A(x)A(y))] dy dx

= Uo + M2 f [ T2(x, y)p(x — y) dy dx. (20^
J 0 Jo

It is convenient to set

J' — [ f T2(x, y)p(x - y) dy dx; (21)
J0 Jo

Eqs. (17) and (18) then take the form

k"2 - (Xr1)! < 8(* - tt-2); (22)

\n2j' + ir~4 — ^(aV — 7r 4) — <Xx2>| < 25(-gV — x-4). (23)

Similar estimates of (X["m) are also available in terms of higher order correlation func-
tions of A{x). For fairly small values of 8 the accuracy should be adequate for many
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purposes. For instance, if 5 = 0.1, Eq. (22) gives the approximate value of
7r~2 = 0.1013 for (X^1) with a maximum error of 0.0065.

The most useful parameter measuring the statistical dispersion of X^1 is its variance,
defined by

var (Xr1) = <xr2) - <xr')2. (24)
Bounds on this quantity are also obtainable by direct substitution from Eqs. (22) and
(23); thus

w (XT') - ,V + *-(4 - 3?) < + S
■4

2 4 (25)

Unfortunately, the error bound provided by Eq. (25) is unsatisfactory. In the first
place, considerable precision is sacrificed by subtraction of two nearly equal quantities.
Secondly, Eq. (13), from which (XJ"1)2 is computed, is less accurate than Eq. (14), which
gives (X^2). Due to these two facts, not only may the error bound given by Eq. (25)
be at least as large as the estimate of the variance, but this latter quantity may even
turn out to be negative. Thus Eq. (25) is of dubious value.

In a more heuristic manner several estimates of var (X71) are available when 5 is
small. Rewriting Eqs. (22) and (23) in the form

(X71) = ?T2 + 0(5), (26)

(Xi2) = 7r 4 + //J' + 0(5), (27)

we see that
var (Xr1) = uV + 0(5), (28)

a result which is also obtainable from Eq. (25). Equation (28) has one of the disad-
vantages alluded to before, namely that Eqs. (13) and (14), from which it is derived,
do not have the same degree of precision. One way of overcoming this is to base the
entire calculation upon Eq. (13), written in the form

X7l = f1 K(x, x) dx - (J - O + 0(5). (29)
J 0

By elementary manipulations it then follows that

var (Xr1) = n2J" + 0(5), (30)

where

J" = f f T(x, x)T(y, y)p(x — y) dy dx. (31)
Jo Jo

A tentative judgment regarding the adequacy of the estimates (28) and (30) can
be formed by comparing them with results obtained in other ways, such as those de-
scribed in [4]. As long as |A| is small, a perturbation procedure is natural. Following
Collatz [5], let us consider the slightly modified problem

U" + X(1 + tA)U = 0, 17(0) = *7(1) = 0, (32)
which reduces to (1) when e = 1. Assuming that the first eigenfunction and the corre-
sponding eigenvalue have the expansions
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U1(x) = E UUxh", (33)
h~ 0

00

xr1 = E X1>Jk«\ (34)
A = 0

and using standard methods, we obtain

X.,o = x-2, (35)

2 r1
Xj, i = -5 / A(x) sin2 xx rfx. (36)

7T «/0

Setting « = 1 and keeping only the first two terms of Eq. (34), we find

Xr1 ̂  \ jl + 2 J A(x) sin2 tx dx(37)

The mean and variance of X71 from Eq. (37) under the previous assumptions regarding
A(x) are

(xr1) = x-2, (38)

var (Xr1) ̂  (39)

where

J = 4 / / p(x — j/) sin2 ttx sin2 try dy dx. (40)
J0 Jo

Note that the estimates given by Eqs. (22) and (38) for (X^1) are identical. Those given
by Eqs. (28), (30), and (39), for var (X^1) are of similar form; a comparison involves
a choice of the correlation function p(x — y).

4. Example. As an example of this theory, let us assume that A(x) is uniformly
distributed over the interval (—5, 5) for each x. If fA(t) is the probability density func-
tion for A (x), then

hit) = 28' - S' (41)

0, \t\ > S.

It follows that 1a — S2/3. Further let us assume that the correlation function p(x — y)
is given, or at least adequately approximated, by

p(.x -y) = e-"'1-*1 (42)

where a is a nonnegative constant. This permits the evaluation of J, J', and J" in
terms of elementary integrals. The former quantity is given in [3], and J' and J" have
the form

/' = -{^-f + A- 4 + 4- 4 + 4e-°}, (43)a loll ba 6a a a a a J

2 1 1,1 4
J" — ~ 1™ — q 2 H 3 5 + e

a l<5l) 6a a a
"(^ + 4 + -)}. (44)

\a a a /)
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3.0

2.0

7r4j"

Fig. 1. The quantities J, J' and J" plotted against a.

We have plotted, as a function of a, the quantities J, if J'and x4./". The results are
given in the figure.

It is clear from Fig. 1 that J' is closer to J than is J". This tends to support the
intuitive idea that use of the more accurate Eq. (14) as well as Eq. (13) is preferable
to considering only the latter equation.

5. Extensions. It is clear that the method presented here can be applied to more
general boundary value problems involving differential equations of the form

L[u] + \r(x)u = 0, (45)

where L is determinate and r(x) is random, together with suitable boundary conditions.
As a practical matter the Green's function must be accessible, and this tends to limit
the class of operators which can be handled.
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