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ON A DOUBLY MIXED BOUNDARY VALUE PROBLEM FOR
AN ELASTIC LAYER*

By R. D. LOW (Department of Mathematics, University of Michigan)

1. Introduction. Consider an infinite, isotropic, homogeneous elastic layer included
between the planes 2 = 0 and z — h of a cylindrical coordinate system (r, 0, z). The
g-axis is directed downward and the plane z = h with the circular portion 0 < r < 1
deleted is taken as a rigid foundation upon which the layer rests. A rigid, flat-ended
circular punch of unit radius is pressed into the upper boundary z = 0 to a depth e by
the application of an axial force P. Frictional forces exerted by the punch and the
foundation on the boundaries of the layer are neglected, as are the body forces. Thus the
problem is to determine the solution of Navier's equation

juV2u + (X + m)V(V-u) = 0, (1)
for the displacement vector u = (ur ,0, «,) subject to the boundary conditions

<r„(r, 0) = <rrz(r, h) = 0, 0 < r < °° , (2)

uz{r, 0) = e, 0 < r < 1, (3)

uz(r, K) = 0, 1 < r < oo, (4)

<r,z(r, 0) = 0, 1 < r < oo, (5)

<r„(r, h) = 0, 0 < r < 1, (6)
and

{all stress and displacement components vanish as r —> »}• (7)

In the above, X and n are the Lame constants; az2 and <rrz are the normal and shearing
stress components respectively.

2. Reduction to a system of Fredholm integral equations. It is known [1] that

2/xu = VF + zVG - (3 - 4o-)Gk (8)
is a solution of (1) where F(r, z) and G(r, z) are harmonic, a is Poisson's ratio, and k is
the unit vector in the positive z-direction. From (8) it follows that the elastic quantities
appearing in the boundary conditions (2) through (6) are given in terms of F and G by

2z) = Fz + zGz — (3 — 4cr)G!, (9)

<r„(r, z) = Fzz + zGz. - 2(1 - a)G, , (10)

(r„(r, z) = Fr, + zGr, - (1 - 2<r)Gr , (11)

where the subscripts on F and G denote partial derivatives. We take for F and G the
following integral representations:

F(r, z) — f [A cosh az + B sinh az]J0(ar) da (12)
Jo

G(r, z) — f [C cosh az + D sinh az] J0(ar) da (13)
Jo
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in which A, B, C, and D are functions of a to be determined by the boundary conditions.
Since both of (2) are to hold for all r > 0, their application requires that

aB = (1 — 2tr)C and aA + ahC + (ah coth ah — 1 + 2<r)D = 0. If we now impose the
boundary conditions (3) through (6) and use the above results to eliminate A and B,
the following system of integral equations is obtained:

f CJ0(ar) da - —Me/( 1 — £r)) 0 < r < 1, (14)
Jo

f [C cosh ah + D sinh ah]J0(ar) da = 0, 1 < r < °° , (15)
Jo

f [ahC + (1 + ah coth ah)D]aJ0(ar) da = 0, 1 < r < °° , (16)
Jo

Jo [c sinh ah + ah + S1&"||h"^C0Sh ah D^aJ0(ar) da = 0, 0 < r < 1. (17)

Thus all conditions will be satisfied if we can determine the functions C and D from what
might be called: the set of "quadruple integral equations" (14) through (17).

The following reduction of this quadruple set to a system of two Fredholm integral
equations is a repeated application of a technique employed by Lebedev and Uflyand
[2] to reduce a pair of dual integral equations to a single Fredholm equation. Hence if we
introduce the new unknown functions <t>(t) and ip (t) and define

C cosh ah + D sinh ah = / sin at dt, $(0) = 0,
Jo

ahC + (1 + ah coth ah)D = / \p(t) cos at dt,
Jo

then it is easily shown that (15) and (16) are satisfied identically. It is then a simple
matter to determine C and the combination C sinh ah + (ah + sinh ah cosh ah)D/smh ah
in terms of <j) and \p. The results are respectively

[-1 + Ji(ah)\ / \p(t) cos at dt + g2(ah) I <t>(t) sin at dt
J o Jo

and

g2(ah) I ip(t) cos at dt + [1 — g3(ah)\ / <j>(t) sin at dt,
J o Jo

where gfi(X) = (X + e"xsinhX)/^(X), <72(V) = (sinhX + X coshX)/i?(X), fif3(X) = (X2 + X +
e~x sinh X)/i?(X), and J'J (X) = X + sinh X cosh X. If we now insert the above into (14)
and (15), make use of the result [3]

f r , ^ W2 - <2)~1/2> r > l'/ J0(ar) cos at da = J
0 I 0 r < t,

and replace J0(ar) by its Poisson integral representation, we find

f ~ £ m[Gl(x + t) + Gl(x ~ <)} dt

- fo <t>(i){G2(x + t) - G2(x + 0} dtj = Me/(1 - <t), 0 < r < 1, (18)
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and

f + la W){G&X + t) + G'2{x - t)\dt

+ 4>(t){G'3(x + 0 — G'3{x — <)} = 0, 0 < r < 1, (19)

where

Gi,3(u) = / gf1,3(ct/i) cos au da, G2(u) = I g2(ah) sm. au da.
Jo Jo

Equations (18) and (19) are Abel type integral equations from which we obtain the
following system of Fredholm integral equations:

4/{x) — f Ki(x, t)\p(t) dt — I K2(x, 00(0 dt = i3, 0 < x < 1, (20)
Jo Jo

4>(x) + [ K3(x, dt + f Ki(x, 00(0 dt — 0, 0 < x < 1, (21)
Jo Jo

where Kx, K2, K3, and Ki are given respectively by G1 (x + L) + G, (x — t), G2(x + t) —
G2(x — t), G2(x + t) + G2{x — t), and G3(x + t) — G3(x — t), and /3 = 2/*e/ir(l — <r).
In obtaining (21) from the solution of (19), we have integrated with respect to x from
zero to x, used </>(0) = 0, and the fact that G2(u) is odd and G3(u) is even.

Due to the nature of the kernels, the solution of the above system will have to be
obtained numerically if h is small compared to unity, but an approximate solution can
be found by the usual iteration methods when h is large. Such a solution, correct to
0(/T4), will be determined in section 4 below.

3. Boundary values expressed in terms of cj> and \f/. In this section we show that,
on those portions of the boundary where they are not prescribed, the boundary values
uz(r, h), a-zz(r, 0), uz(r, 0), and <r„(r, h) are directly expressible in terms of 4> and \p, thus
making it unnecessary to determine the function A, • • • , D. Except for the constant
factor — (1 — tr)//i, the left side of (15) is equal to uz{r, h) for all r. In particular when
0 < r < 1, we find

0(0 dt
liu, Vt2 - 7's(r, h) = — (1 — o-) £

In a similar manner, we obtain from (16) when 0 < r < 1

0) = -*(1)(1 - r2)"1/2 + *'{t) dt

Incidentally, this last result relates the axial force P and the function \p. We have

P = —2x [ c„(r, 0)r dr = 2t [ \p(t) dt.
J 0 J 0

The remaining boundary values are not so simply expressed, but it is not difficult to
show, using (20) and (21), that

Mu,(r, 0) = (2^/x) sin"1 (1/r) - (1 - <r) £ £ [K^x, 0^(0

+ K2{x, 00(0] dt, 1 < r < co,
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and

Cr„(r, h) = 0(l)(r2 - 1 r1/2 - £ ^==£ £ [*,(*, <)lK0

+ i^T4(a:, 0^(0] <^, 1 < r < oo.

This last result furnishes a necessary condition for the validity of the solution of the
posed problem; namely, c„(r, h) < 0 when r > 1. For otherwise the layer would break
contact with the foundation and u2 (r, h) would not be zero as required in boundary
condition (4).

Finally, it is perhaps worth noting that the solution of the problem of a punch acting
on a half space follows from the above in the limit as h —*■ °°. For in this case the kernels
Ki tend to zero and the solution of the system (20) and (21) is simply \p(x) = /3, <p(x) = 0.
Then the previous expressions give u,(r, 0) = (2e/ir) sin-1(l/r), 1 < r < °o; a,t(r, 0) =
—/3(1 — r2)~1/2, 0 < r < 1; and P = 4/ie/(1 — o-). These are, of course, well known,
and hence serve as a partial check on the method of solution.

4. Approximate solution for large h. In this section we obtain the solution of the
system (20), (21) correct to 0(/T4) by the usual iteration process. We take as the zeroth
approximation ipa{x) = /3, 4>0(x) = 0, and then the nth approximation is to be determined
from

<A»(z) = 0 + [ Ki(x, t)#n-i(t) dt + f K2(x, «)0«-i(O dt,
J o Jo

<f>n(x) = - f K3(x, <)^»-i(0 dt — f K4(x, 1(0 dt, n = 1, 2, 3, • • • . (22)
t/o Jo

If the kernels are expanded in decreasing powers of h and powers of h~l higher than
the fourth are discarded, we obtain

K<(X, t) = -|| x + o(r5),

where

irAn = 2 f X2nffl(\) d\, ttB„ = 2 f \2n+1g2(\) d\,
Jo Jo

TCn = 2 f \2n+°g3(\) dx.
Jo

With the above truncated kernels it is found that four iterations are sufficient to give
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\p(x) = fi(a + bx2) + 0(/T5), <f>(x) = —/3(cx + dx3) + 0(h~5), where

A0 , Al , 6Al - A1 , 6A„4 - 3^0^! - 2B
a = 1 + ^ + ~2+ " 3 1 +h ' h2 1 6 h3 ' 6h

Al. _ A°A> _ i° i , 6^02g0 - fi, _ J?,
~2h3 2/i4 ' C h2 + h2 + 6/i4 ' 6/i4'

It is then a simple matter to obtain

uz(r, h) = (2e/7r)(l - r2)1/2[c + d(4r2 - l)/3] + 0(/i"5), 0 < r < 1,

<r„(r, 0) = —/3(1 — r2r1/2(a - b + 26r2) + 0(/i-5), 0 < r < 1.

It is interesting to note from the above expression for ujr, h) that since c = ),
the effect of the hole in the foundation is negligible when h is so large that terms of
order h'2 can be ignored. For in this case uz(r, h) would be zero for all r, which is the
boundary condition one would use in place of (4) and (6) when the foundation contains
no hole.
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ON THE OSCILLATIONS OF A PENDULUM UNDER PARAMETRIC
EXCITATION*

By R. A. STRUBLE (University of North Carolina, Raleigh, N. C.)

In a recent paper [1], we examined the oscillations of a pendulum under parametric
excitation using a formal asymptotic method. It is the purpose of this note to point
out that the general behavior suggested for this system may be corroborated through
the application of a new mapping theorem due to Moser [2].

Consider the nonlinear equation

^ o ~ cos wtj sin 0 = 0, (1)

where co, co0 , £o and L are positive constants with £0/L small. This equation depicts
the motion of a simple pendulum which is excited parametrically by small, vertical
vibrations of its support. (See [1]). The free motions for £0 = 0 are well known [3] and
can be described by the energy integral

1 (dd\2 _
2\dt) co2 cos d = E. (2)
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