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Introduction. In this paper we rederive the existence and the form of the mixed
potential function for complete electrical networks using a graph theoretic approach.
Besides some detailed proofs complementing the paper "A theory of nonlinear net-
works, I" [1], several additional results are obtained. Also, some well-known results
for electrical networks are discussed and rederived starting with the existence of a mixed
potential function. In the last section a theorem on the existence of periodic solutions
for periodically excited nonlinear circuits is proved. This result can be considered as
an extension of a theorem of R. Duffin [2].

11. Description of graphs by matrices. With any given directed graph as it was
defined in section If one can associate a matrix (incidence matrix) in the following
manner. Let the index ix = 1, 2, ■ • • , b label the branches and v — 1, 2, • • • , n the
nodes of a graph. Since every branch has an assigned direction, we can distinguish an
initial node and an end node. We define a„„ = +1 if the juth branch has the rth node
as endpoint, = —1 if it is the initial point, and zero otherwise. The matrix,

(a,„)> v = 1, ••• ,n, n = 1, • • • , b, (11-1)

which has n rows and b columns, describes the graph completely.
This matrix has several obvious properties. Since every branch connects exactly

two nodes, every column of the matrix (11.1) contains exactly one pair of +1 and —1,
and zeros otherwise. This implies, in particular,

22 = 0 for n = 1, • • • , b, (11-2)
v = 1

so that the rank of the above matrix is at most n — 1.
We want to assume now that the graph is connected, i.e., that any two nodes can

be connected by a path of branches. Then we will show that the rank of the matrix
(11.1) is n — 1 (which implies also that b > n — 1).

*Received July 22, 1963. The results reported in this paper were obtained in the course of research
jointly sponsored by the Air Force Office of Scientific Research [Contract AF 49(638)-1139] and IBM.
Part I of this paper appeared in this Quarterly in April 1964.

fReference to sections 1-10 refer to [1].



82 R. K. BRAYTON AND J. IC. MOSER [Vol. XXII, No. 2

For the proof of this statement we select a maximal tree r in the graph. Such a tree
is connected and contains all n nodes of the graph. We assume it has t branches. We
select a node in r at which only one tree branch is attached and label the node v = 1
and the branch n = 1. Clipping off this branch, we are left with a tree with t — 1 branches.
Again we select a node of this tree with only one tree branch and label it by v = 2 and
the branch by n = 2. This procedure continues until we have a tree of one branch and
two nodes since n = t + 1.

This labeling of the tree nodes and branches has the effect that

= 0 for v < n < n, (11-3)

Since a branch p < n is attached only to a node with v > n. Moreover,

avr = ±1 for v = 1, • • • , t,

which shows that the square matrix (a„„) with v, n = 1, • • • , t has determinant ±1
and therefore the rank of the matrix (11.1) is equal to t = n — 1.

Since the rank of the matrix (11.1) is t = n — 1, it suffices to consider only t = n — 1
of its rows. The missing row can be recovered with the relations (11.2). Therefore, we
cancel, for instance, the last row and introduce the matrix

A = («,„), v = 1, • • • , t, n = 1, • • • , b, (11-4)
which also describes the graph completely.

The matrix A contains in each column one pair +1, —1 or exactly one nonzero
element. Moreover, A has maximal rank, namely t = n — 1. If the graph is not con-
nected, then the rank t is not n — 1 any longer, but n minus the number of unconnected
components, and, again, one can introduce a matrix A with maximal rank t by omitting
one node from each component.

12. Kirchhoff's laws. With the matrix («„„) of (11.1), Kirchhoff's node law takes
the form

b

^2 = 0, v = 1, • • • , n.
ii-i

Since, on account of (11.2) one of these equations follows from the others, we can drop
one. Introducing the vector i =&,'•• , ib), we have

Ai = 0, (12.1)

where A is the matrix (11.4). We denote the linear space of vectors i satisfying (12.1)
by g. Moreover, if we denote the row vectors of A by

dv ■ * (0iy 1 , , Oiyb) , V l

then (12.1) can be written in the form

(a, , i) 0, ^ 1> *

for all vectors i in $, i.e., the vectors a, , ■ • • , a, span the orthogonal complement of
We have shown in Section 2 that V is orthogonal to $ and has dimension t = n — 1
(since we can choose t independent voltages). Hence, this shows that V is the entire
orthogonal complement of $ and that <Zi , • • • , at form a basis for V.

Theorem 9. The space V of voltage vectors satisfying Kirchhoff's voltage law is
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spanned by t vectors eti , • • • , a, with components ±1,0 which are the rows of the
matrix (11.4).

In a similar way there is a basis

b\ = (/3xi , • • • , Pu), X = 1, • • • , I = b — t,
of I vectors in g. We construct a basis in such a manner that all /3Xm are ±1, 0. Since
3, V are orthogonal complements, we have to determine I vectors 6X so that

(a, , 60 = 0, v = 1, ••• , t, X = 1, ••• , I. (12.2)
This system of linear equations is conveniently written in matrix notation if we

combine the «i , • • • , a, again into the matrix

A = (A.i , A2),

where Ai contains the first t columns (i.e., Ai is a t X t matrix) and A2 contains the
last b — t = I columns. Similarly, we introduce

B = (/3Xfl) = (Bl , B2),

where B2 is an I X I matrix. The relations (12.2) take the form

A,Bl + A2B2 = 0,
where B\ denotes the transposed matrix of Bx . Choosing B2 = 7, we solve this system
in the form

Bl = -Ar1^,
or

B = {-At2{A\Y\I). (12.3)

This is always possible if det Ax 0, but this is just what was achieved in the last
section (see 11.3).

From the properties of A one verifies that the matrix B = (/3X„) so constructed has
elements ±1,0 only.*

In what follows, it will be convenient to replace the matrix A by the matrix

A* = AilA = (/, A^AJ = (I, At).

Since A* = —B\ , then A % has elements ±1, 0 only. In fact, A* can be obtained from
A by adding rows of A and multiplying by +1 or —1. From the fact that A*i = 0,
we read off that each of the tree branch currents

bi, = — S
H=t + 1

can be expressed solely as linear combinations of the link branch currents with coeffi-
cients ±1, 0. The matrices A and A* are called cut-set matrices by Guillemin (see [4]),

*A matrix is said to be unimodular if every minor determinant equals 0, +1, or —1. In a theorem
by Heller and Tompkins (see Hoffman and Kruskal [3]) it is shown that matrices with the properties of
A are unimodular. Clearly, a nonsingular square matrix such as Ai must have an inverse with entries 0,
+1, or —1 only. Furthermore, the inverse has the property that the nonzero elements in each row have
the same sign. From this it follows that Ai_1A2 has entries 0, +1, or —1 only.
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and they differ only in the choice of an independent set of node-pair voltage variables.
The elements of B have a simple interpretation also. Namely, Kirchhoff's voltage

law can be written in the form
Bv = 0,

or in components (using 12.3)
t

Vx+, = Z) —/W . X = 1, • ■ • , Z. (12.4)
A-l

This relation expresses the link voltage (in the branch X i) in terms of the tree voltages
Vi , ■ • • , v, . In other words, each row of the matrix B in (12.3) corresponds to the loop
through the link with label X + t. The matrix B is called the tie-set matrix by Guillemin
where the choice of the independent current variables is simply the link branch currents
of the links of r.

Summarizing, we have found in the row vectors of A* and B basis vectors for the
mutually orthogonal spaces "0 and $ respectively. The n X n matrix

/ A% 1
B -A *T

(12.5)

will be called the connection matrix. It is a nonsingular matrix which will be of im-
portance in the next section.

13. Construction of the matrix y and the mixed potential.
A. The form of the connection matrix C for a complete circuit. We want to show how

to construct the mixed potential for a complete circuit and in the process to locate
the matrix y of section 6 as a submatrix of the connection matrix (12.5). In constructing
the mixed potential, we proceed directly from the connection matrix. Recalling the
situation of section 6, the graph 91 was broken up into two graphs 91,- and 91, , 9l„ was
obtained by choosing a subtree r' of a maximal tree r and adding to this each link which
formed a loop only through branches of r' (9l„ = / + £'). was taken as the remaining
b' — t' — V branches. (91,- = r — / + £ — £').

We label the branches as in section 12, i.e.,

met', yu = 1, • • • , t',

(It T — T', H = t' + 1, • • * , t,

fi £ £ — £', /j.= t-\-l, — V,
ii t £', n = t -j- I — I', • • • , t I = b.

We now prescribe the currents, i„, with a e £ — £', and the voltages, v„ , with fj.tr
which form a complete set of variables. Recall that in a complete circuit the branches
of t' contain capacitors only, the branches of £ — <£' inductors only, and the remaining
branches resistors only. For notation let vn\ v<2), v(3), v<4), ia>, i(2), i{3\ iu) denote
column vectors where the superscripts 1, 2, 3, and 4 refer to the branches of r', t — r'.
£ — £', and £' respectively. Thus,

„-<2> „,<2>i , vand v =
„-<3> ..<3>i v

u"(4)J IV4',
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Note that v!1> = v* and i(3) = i* in the notation of Section 4, and these form the com-
plete set.

We now partition the connection matrix C into t', t — t', I — V, and V rows and columns,
as shown below.

t'

c=t~t'
I - V

V

Lemma: For a complete circuit

C =

V t-V l-V V

C] 1 Ci2 C\ 3 Cj 4

C21 C22 ^23 ^24

^31 ^32 C33 C34

C4I C42 C43 C44

I 0 C13 C\ 4

0 I c23 0

-cT, -c2r3 / 0

-cf4 0 0 /

(13.1)

Proof: From the form of A* and B given by (12.5), it is obvious that C has the
above form except for the fact that c24 = — c/2* = 0. Since we know that c24 = — c42 ,
we only consider the matrix B, the rows of which correspond to independent loops.
In particular, the last V rows of B correspond to the loops of the links of £,' and, by
assumption, these loops are completely contained in 91, . This means that the submatrix
ci2 must be zero, which proves the lemma.

B. Construction of P. We denote the three remaining submatrices of C as follows:

C31 = y, C32 — 01, c4i = /3, (13.2)

which gives

C =

I 0 -yT 0T

0 I —aT 0

y a I 0
-0 0 0 I

From the relations A*i = 0 and Bv — 0 (or = 0), we find

iw = yTi* - pTi«\

i(2) = cJi*,

V(3> = — yv* — av(2\

v(i> = fa*, (13.3)
where the notation i(3) = i*, and v'1' = v* was used.

Since in) is the set of currents through the branches of r' which contain only capaci-
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tors in a complete circuit, it follows that

iM = ~cdJir=-cii- <13-4)
Similarly, we have

„«> 7- di<3> 7-^'* /,o ^
y ~ -L~df - ~L~di' (13'5)

since w!3) is the set of voltages across the branches of £ — £' and these contain only
inductors.

The remaining branches contain only resistors and we use the fact that the current
or voltage in a resistor is a function of its voltage or current alone, i.e., we can write
formally

„ <2>= -j(im),

iw = -g{vw). (13.6)

Combining equations (13.3) to (13.6), we express the differential equations in terms
of the variables i* and v* only:

L<^tt = yV* ~ aKaTi*)>

C^=~yTi* ~ PTg(Pv*). (13.7)

Because of the form of (13.7), one sees easily that

P{i*,v*) = (i*,yv*) — f (af(ari*),di*) + f (0Tg(j3v*), dv*), (13.8)
J 0 J 0

or, written in another form,

= (i*, yv*) - J (j(im),dil2)) + J (g(vw),dvw), (13.9)

where the integration is from % — 0 to aTi* and from v'A' = 0 to /3w*.
The submatrix y of the connection matrix is therefore the same matrix y defined

by (6.3) and thus we have shown, as was promised, that y has only elements ±1,0,
in particular y = —c& = c31 . We see also that the current potential of r — r', which
we have written as —A(i*), is given by

Aii*) = f (af(aTi*), di*)
Jo

— £ [ IJSp) din • (13.10)
M J

and the voltage potential of <£', written as — B(v*), is given by

B(v*) = [ (0Tg(j3v*), dv*)
Jo

= H / gM dv, . (i3.il)
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Thus i'2' = aTi* and v'4 = fiv* express how the currents and the voltages in the resistors
are related to the independent variables. This will prove useful in section 19 in de-
termining the behavior of P(i*, v*) as | i* | + | v* | —> <».

14. Existence of equilibria. If we assume that the network contains only resistor
elements—as we discussed them in section 3—a relation between the voltage and the
current is introduced, for instance,

i„ = M = 1, • • • , b. (14.1)

It is then of basic importance to verify that these relations are compatible with Kirch-
hoff's laws and that a simultaneous solution of equations (14.1) and Kirchhoff's laws
exists, i.e., an equilibrium exists.

Theorem 10: If in (14.1) we assume that g„ is a continuous function of v„ and

f g„(u) du-* co for | | —»• 00 , m = 1, • • • , b,
«/o

then there exists a solution to equations (14.1) and Kirchhoff's laws.
Proof: The function (voltage potential)

b

G(v) = f 9M) du,
M = 1 ^ 0

where v = (vi , • • • , vb), is a continuously differential function which tends to =» as | v |
tends to <*> in any direction. If we restrict the vector v to the linear subspace V given by

Bv = 0,

(i.e., v satisfies Kirchhoff's voltage laws), then clearly G will also tend to °° there. The
proof of this theorem rests on the fact that the extreme values of G restricted by Bv ~ 0
automatically satisfy Kirchhoff's current laws. Namely, if v = v° corresponds to an
extremum of G on V, then the gradient

dG(v)
dvu = gM) = m = i,

belongs to the orthogonal complement $ of V. To show this, we write the side conditions
Bv = 0 in the form (b„, v) = 0 where the b„ are the rows of B. According to the Lagrange
multiplier method, we must find the extremum of G(v) — X)"-i ^v(b„ , v), which gives
the condition G, — X)"-i = 0- Hence, G, lies in the space spanned by br , • • • , 6„ ,
i.e., in <J. In fact, this property is necessary and sufficient for an extremum of G on V.

Therefore, the proof of the theorem is reduced to showing the existence of an ex-
tremum of the function G restricted to V. However, since G —» » as | v | —> » in V,
then certainly G possesses a minimum in V which completes the proof.

For uniqueness one must ensure that there are no other extrema except the mini-
mum. For this purpose, it suffices to assume that G is convex or > 0. This corresponds
to "positive" resistors (also called quasi-linear resistors by Duffin [5].)

The above argument required that the were single-valued functions of . This
need not be the case for nonlinear resistors. In some cases, v„ may be a single-valued
function of

v, = UQ, (14.2)
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and then the existence of an equilibrium can be established in an analogous fashion by
finding a minimum of

m = Z P /„(X) dx (14.3)
M=1 ^0

(current potential) restricted to the linear space $. In fact, this description can be
considered dual to the first one.

We see that either of Kirchhoff's laws can be replaced by a law stating that a certain
potential should be a minimum. This fact is, of course, well known. For instance, Maxwell
[6] stated such a theorem in 1873 for linear networks called Maxwell's "Minimum Heat
Theorem" and in 1951 W. Millar [7] proved the corresponding statement for nonlinear
networks. Millar uses the terms "content" and "co-content" which in this paper are
called "current" and "voltage potential", respectively. Such concepts were also used
by Duffin [5] to prove existence of an equilibrium solution for nonlinear networks and
the uniqueness for quasi-linear networks.

15. n-Ports and reciprocity of networks.
A. n-Ports. An n-port /('-circuit can be defined as a network containing only

resistive elements and n additional free branches in which either the currents or the
voltages can be prescribed—by idealized current or voltage sources. We depict such an
n-port by a box (see figure 16) containing the resistors and n pairs of free wires. For

Fig. 16. n-Port fi-circuit.

definiteness we insert current sources in the r pairs on the left, prescribing the cur-
rents ii , • ■ • , i, and voltage sources at the right with voltages vx , • • • , v, .

The equilibrium state of the n-port will then depend on the parameters u , • ■ • , ir ,
The effect of the network on the free ends is described by the functions

Vx , • • • , V, and Ix , • • • , I, which describe the voltages and currents, respectively,
at the free ends. We choose the notation in such a way that (ip , Vf) (p = 1, • • ■ , r)
correspond to the same free end and similarly for (v„, /„) (a = 1, • • • , s).

We will assume that these functions are well-defined and single-valued. Then, it
follows from section 4 that these functions can be obtained as derivatives of a single
function P(i, v)—the potential of the n-port. Namely, if , w„ (n — 1, • • • , b) denote
the currents and voltages in the interior branches of the n-port, then we have from
theorem 2 of section 2

[ dj„ + X Vr dip + S v* dl, = 0,
J r L n=\ p = l <r=1 J

where the integration is taken over the path T of equilibrium solutions from a fixed
point to a variable one. Therefore, with

P = [ J2 w»dj„ + 2 [ d(v,I „),
J r n=i <r=i J r
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(which is to be expressed as a function of i, v), we have

dP + 23 Vp dv„ = 0,
p=»l <r = l

or

v _ dP _V„~ ^ , p - 1, ••• ,r,

I, = ^ , <j = 1, • • • , s. (15.1)
oVff

Thus, we see that this function P can be considered as characteristic for the n-port.
How the function P can be constructed has been considered in detail in sections 5

and 6 and need not be repeated here. Obviously, the situation discussed there is obtained
if one inserts inductors and capacitors in the free ends of the n-port.

B. Reciprocity of networks. If we consider an n-port at which only currents are
prescribed, iL , • • ■ , ir (r = n, s = 0), then the voltages Vi , • • • , Vr are given by

r)P
V'=~§> P=l, (15.2)

In case all the resistors are linear, these relations are linear, i.e., there exist some constants
Rf, such that

= Z Re,i, , p=l, (15.3)
«r-=l

From the form of (15.3) it is clear that the constants Rp» can be found by

R„ = (-p) • (15.4)
\ / i r' = 0, a^tr'

The reciprocity theorem for linear passive bilateral networks (see, for instance,
Guillemin [4]) is equivalent to the statement that

R0„ = R (Tfi

This relation is obvious for the networks considered since

R = = — P (25 5)" di, di, di, ^ ^

clearly displays this symmetry property. In the nonlinear case we will define Rf„ by (15.5)
which, in the linear case, agrees with the usual definition (15.4). Hence, the reciprocity
theorem, as stated above, holds for nonlinear networks as well if the mutual resistance
is defined by (15.5).

This property of reciprocity is, in fact, characteristic for the existence of a function P
such that (15.2) holds. Namely, if R„, — R,„ , then dVJdi, = dV„/dif by definition,
and this condition implies that V„ (p = 1, • • • , r) can be considered as the gradient of
some function P(i). Thus, the integrability conditions imposed by (15.2) on the voltages
V„ are—from the physical point of view—equivalent to the requirement of reciprocity
for the circuit.
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16. Legendre and y-A transformations. For an n-port i2-circuit there will, in general,
exist n relations between the 2n variables, , • • • , i„, vi, • • • , vn, such that n of them can
be considered independent. Geometrically, this means that in the 2n-dimensional space
we have an n-dimensional surface ^ which is, in fact, characteristic for the external
electrical behavior of the n-port.

If, for two n-ports, these functional relations are the same, i.e., the corresponding
surfaces coincide, then we will call these n-ports "equivalent." The reason for this
definition is that two "equivalent" n-ports operating in a network cannot be distinguished
(except by making some internal measurements).

There are several ways in which the independent variables for an n-port can be
chosen. For instance, for a 2-port, one can prescribe the currents , i2) in both free
ends, or the voltages (vx , v2), or one voltage and one current {ix , v2), (i2 , fi). We want
to investigate how the corresponding potential functions are related if they exist.

We use a different notation from the last section and denote the currents and voltages
at the ports by iv ,vv(v= 1, • • • , n), i.e., we do not capitalize the letters corresponding
to the dependent variables.

A simple case is when , • • • , i„ are prescribed (current sources in the free ends)
and the voltages are to be determined. If we denote the corresponding potential by
P = F(ii , • ■ • , in)—in agreement with the notation of section 6—then we have

dF
V, = —rr , v = 1, • • • , n. (16.1)

ai.

Similarly, if the voltages are prescribed and the corresponding voltage potential is
denoted by G{vx , • • • , vn), we find

v=l (16.2)
OVy

The two sets of relations (16.1) and (16.2) describe the same surface X) and they
can be considered as transformations which are inverse to each other. The form of these
two transformations is that of "Legendre transformations" since the right-hand sides
are gradients of one function. For such transformations the relation between F and
G can be easily expressed by the formula

F + G = - E i,v, . (16.3)
r—1

To prove this we set

G = —F - X) i,v, ,
y = l

and form the differential considering i„, v, as independent variables:
w n

dG = — dF — 21 i' dvv — XI Vv di,
f=1 v=\

- X \ ~ M di, — iv dvv .\ Sly /

The first term vanishes if (16.1) holds so that
w

dG = —^2 i, dv, ,
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which leads to (16.2). Thus, (16.1) and (16.2) are inverse Legendre transformations and
the potentials are related by (16.3) (up to an additive constant).

As an example, in the linear case F is a quadratic form
n

F(i) = -j Z a= — \(i, Ai), (16.4)
v ,n = \

where A is a symmetric nonsingular matrix. Then

v - - AiV di~ Ah

and
G(v) = — (i,v) — F(i) = — (i, Ai) + h(i, Ai)

= 2(^1 Ai),

or with v — Ai
G{v) = -J(», A~'v). (16.5)

In this connection, we want to discuss the well-known Y — A transformation and
show that it has no analog for nonlinear circuits.

A F-circuit can be considered as a 2-port with three resistors as shown in figure 17.

i, •—*- ■<—

Fig. 17. F-circuit.

We describe this circuit by the current potential
2

F = — \ 23 Rpil , where i0 = it + i2 , (16.6)
v = 0

so that the matrix A of (16.4) has the form

A = R1 + R0 R 0

R0 R2 + R0.
(16.7)

where R0 , Ri , and R2 are positive.
A A-circuit can also be considered as a 2-port with three conductors as shown in

figure 18. We describe the circuit by the voltage potential

G= -it Grvl = -Kf, Bv), (16.8)
v = 0

where v0 = v2 — Vi ,
a j_ a —a

(16.9)B =

and G0 ,Gi , and G2 are positive.

Gi + G0 —G0

— G0 G2 + Go.
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Fig. 18. A-circuit.

To show the "equivalence" of these two 2-ports, we must find G0 , G1 , G2 > 0 so
that G and F give rise to inverse Legendre transformations, i.e., as was shown by (16.5),
that B = A~1. The inverse of A exists since its determinant

Rq{Rx + R2) + RiR2

is positive. It remains to be shown that the elements G, are positive. This elementary
fact follows from

1
ac — b2

c —b

— b a
(16.10)

In the case under consideration a, c > 0 and 0 < b < Min (a, c), and one reads off that
G0 > 0 and G, -\- Go > G0 (v = 1, 2), i.e., Go , (?i , G2 > 0.

Similarly, for G0, Gx, G2 > 0, one can find the R0, Ri , R2 such that A is the inverse
of B showing the "equivalence" of Y- and A-circuits. Using (16.10) one gets an explicit
relation between the R„ and the Gv .

If, however, the resistors are described by nonlinear functions w„ = (v = 0,1, 2)
for the F-circuit and j, = (v = 0, 1, 2) for the A-circuit, we will show that such
an equivalence does not hold any longer. We assume that /' > 0. Denoting the integrals
of /„(A), g,(\) by Fr(\), C?„(X), respectively, the potential F(i) of the Y circuit takes the
form

-F({) = FSi) + F2(i2) + Foii, + i2),

and the potential G of the A-circuit takes the form

—G(v) = Gityi) + G2(v2) + G0(v2 — fi). (16.11)

To show the "equivalence" of the two circuits amounts to showing that the (convex)
function F(i) gives rise to a function G = —F(i) — iiVx — i2v2 which has the form
(16.11). For a function to be in the form (16.11) it is necessary that

(i+lUl^ = n
KdVi dvj dv1 dv2

This expression can be explicitly calculated and, in case /„ = —R,iv (v = 1, 2) are
linear and only fo(io) is nonlinear, the calculation using G = —F(i) — iiVi — i2v2 gives

d_ . d \ _5_ „ _ RlR2fo'(Ri + R2)
dv1 dvj dVi dv2 (RiR2 + (Ri + R2)fo)3'

showing that /„' = 0 necessarily. This implies that /0 must also be linear. Thus we have
shown:

A Y-circuit with two linear resistors and a third element can be equivalent to a A-circuit
ij and only if the third element is also linear.
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Finally, we want to show the relation between different mixed potential func-
tions of an n-port. Let P(i, v) be the potential function for the case where ix , ■ • • , iT ,
vr+l , • • • , vr+, (r + s = n) are prescribed. Then we know from section 6 that

Hi.
Vp di, ' p

dP . .%. = — , <7 = r + 1, • • • , r + s.
av.

Assuming that the complementary set of variables »i , • • • , v, , ir+l , • • ■ , ir+, can be
prescribed, i.e., that the above transformation can be inverted, we denote the corre-
sponding mixed potential by Q. Then

dQ ,»p = 5T. p = 1, • • • ,r,

and the relation

dQ . , ,
v„ = —rr , <j = r + 1, • • • , r + s,

a%a

r r+ a

P + Q = 12 Vp — X
p = 1 «r=r +1

holds (up to an additive constant). This follows from

dQ = J2 Q„ + £ Qi. di,
p = 1 <r=r +1

r r + 8

= if dvp — 12 v„ di„
p = I <r=r +1

= d(J2 Vp — 12 i*va) — dP.
p<r <r>r

All these relations stem from the fact that
n

12 v„ di, (16.12)
f =»1

is the differential of a function. Using the notation of the calculus of differential forms,
one can express this fact in the following form:

Theorem 11. If i,, v, (v = 1, • ■ • , n) are the currents and voltages of the n-port, then
n

12 (dv„ A di,) = 0
v = l

(i.e., this form vanishes identically on the characteristic surface 12 of the n-port intro-
duced at the beginning of this section).

Remark. This differential form is meant in the sense of H. Cartan [8], namely: if, for
example v„ = v,(x, y), iv — i>(x, y) (v = 1, 2) depend on two variables x, y (so as to com-
ply with the w-port equations), then this relation means that 12l~i d(v„, i„)/d(x, y) = 0.
For instance, if v„ = j,(iv) and x = ix , y = i2 , then this yields

d(/i , ii) d(/a , Q = _ dU _ q
d(ii , i2) 3(z'i , i2) di2 di,



94 R. K. BRAYTON AND J. K. MOSER [Vol. XXII, No. 2

Proof. Denote by i„, vh (n = n + 1, • • • , n + b) the currents and voltages of the
internal branches. Then by theorem 1, we have

X) v, di, + X) vn diu = 0.
v<n M>n

Hence
^2 dv, A di, + dv„ A = 0.
v<n p>n

Since the v„ depend on i„ alone (m > n), it follows that dv„ A di„ = 0 (jj. > n), proving
the theorem.

Fig. 19. 2-port network.

For example, in a 2-port as in figure 19, we have

dii A dVi + di2 A dv2 = 0,
or

dii A dvi = d( — i2) A i

which expresses that (ii, and (—i2, v2) are related by an area preserving transforma-
tion. For linear circuits this transformation is written

A B
C D

where as a consequence of the area preserving property AD — BC = 1 (see G. New-
stead [9]).

17. Transformation properties of the differential equations. It must be noted that
the particular form of the equations derived in section 4 depends on the choice of variables

x = (^j. If one transforms the system into a new set of variables, say y = 4>(x), then,

in general, this form
— L 0~. dx _ dP

di ~ ~dx ' 0 C
(17.1)

will be destroyed. Therefore, we wish to study which transformations y = 4>(x) have the
property that in the new coordinates the form of the equations is again

where Q(y) = P(x), y = 4>(x).
Theorem 12. A coordinate transformation y = <f>(x) preserves the form of the

differential equations (17.1) if and only if it preserves

(dx, J dx) — —(di, L di) + (dv, C dv)*
*This differential is not meant in the sense of Cartan.
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i.e., (dx, J dx) = (dy, J dy). An equivalent condition for the Jacobian matrix <j>x is

= J •

Proof. The transformed differential equations are

On the other hand, if P{x) = Q(y), we have

dP = (Px , dx) = (Q„ , <j>x dx),

or

Our requirement is that

or

Px = VxQv ■

HxJ l<t>l = 11

</> XJ<j>x = J,

which is necessary and sufficient that (17.1) is transformed into (17.2).
Since

{dy, J dy) = (<f>x dx, J<j>x dx) = {dx, <t>TxJ<f>x dx),

the above condition is equivalent to

{dy, J dy) = {dx, J dx),
which was to be proved.*

Therefore, the form

{dx, J dx) = —{di, L di) + {dv, C dv)

will be associated with (17.1). This form is, in general, indefinite. However, if the system
does not contain any inductors, the form reduces to

{dv, C dv) = {di)2,

which is positive definite and can be used to define a metric (dsf.
In fact, if we differentiate P along a solution, we find

dP _ ( dx\ _ tdx dx\
~ V ' dt) ~ ~\dt ' dtJdt

*It is interesting to contrast theorem 12 with the analogous theorem for Hamiltonian systems. In
such systems the differential equations have the form

—J* dw/dt = H^t, w),
where w = ("),/* = (_? o) and u, v are n-dimensional vectors. The question is asked under which con-
ditions a transformation, w = z) transforms a Hamiltonian system into a Hamiltonian system. The
answer is that the matrix <f>e must satisfy the relation

<PrJ*4» = J*.

Such matrices <t>, are called symplectic and the corresponding transformations w = 4>{t, z) are called
canonical transformations.
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When no inductors are present, this can be written as
2dP = (ds

dt \dt,
exhibiting that P is a decreasing function of time.

The main idea of section 8 was to find a metric, i.e., a positive definite differential
form, associated with the system.

As a result of theorem 12, we see that no new differential form is obtained by a
transformation of coordinates which preserves the form (17.1). However, in section 8
we saw that under special assumptions a metric could be obtained by expressing the
equations with a different (J, P) while keeping the coordinates the same, i.e., we found
(J*, P*) such that

j* — —  p*

where the differential
(dx, J* dx)

was positive definite. In this case

(IP* _ _(dx _ _fdsV
dt ~ \dt ' dt/ ~ \dt) '

which shows that P* is a decreasing function of time.
18. Foster's reactance theorem. In the theory of linear electrical networks the

study of the driving point admittance* is of basic importance. For linear circuits without
resistors, Foster [10] succeeded in giving a complete description of the driving point
admittances which are realized by such networks. We want to rederive his result—at
least in one direction—and show that the driving point admittance has simple poles
on the imaginary axis with nonnegative residues. That a circuit can be constructed
for any such function is easily shown and can be found in the same paper of Foster (see
also Guillemin [11]).

We consider a nonresistive circuit, i.e., we assume that P = (i, yv) and the dif-
ferential equations take the form:

Lft-y + E,
n dv T.c7t = ~y *•

where E is a vector of the form

E =

Ei(t)

0

. 0
*The driving point admittance of a point of a network is the ratio of the resulting current at that

point to an impressed voltage at the same point.
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The problem is to determine ii(<) for a given function Ei(t). This problem is solved
easily by the use of Laplace transforms reducing it to the case of exponential functions
for Exit). Replacing all functions by exponentials, we find with Ex = E*ev
v = v*evt the condition

'E*

0Mw =

0

with w -

where

M = M(p) =

One obtains (using Cramer's rule)

Lp -7

yT Cp.

j* — (P) 7?*
det M(p) '

where Mn is the subdeterminant obtained from M(p) by cancelling the first row and
column. In fact, the function

Y(p) = J^pLdet M(p)

is the driving point admittance of the first branch.
We want to show that Y(p) has poles only on the imaginary axis which are simple

and have nonnegative residues. For this purpose we note that Y(p) is the element in the
first row and first column of the matrix M'1(p). In other words, with u = (1, 0, • • • , 0),
we have

Y(p) = (u, M-'Wu).
Introducing p = i\* and the diagonal or symmetric matrix

0D =

one can write M (p) in the form

0 C1

M(j>) = M (tX) = i L\ iy

L-iyT CX
= iDQJ - S)D,

where

S = 0 -i/3
U'/3r 0

*Here i denotes ( — l)1'2.
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and £ = L~1/2yC~1/2. It is clear that with v = D~1u,

Y(p) = (it, M_1(p)m) = t (v, (XI - ty-'v).t

The matrix S is Hermitian, i.e., S = ST. This implies that its eigenvalues are real.
Choosing Xk as the distinct values of the eigenvalues, there exist projection matrices
Pk such that Pk = PTk = P2k and with which the resolvant (XI — S)'1 can be written
in the form

(XI - S)-1 = z X - X* k i

where the sum is taken over the distinct eigenvalues of S. This is an immediate conse-
quence of the spectral theorem for Hermitian matrices (see Halmos [12]). Thus

iY(p) = £ rk
U X - x, '

where rk = (v, Pkv) = | Pkv |2 > 0 and with pk = iXk , we have

nYip)
k V - Vk

which proves that the poles are purely imaginary and simple and the residues rk are
nonnegative.

Since, by definition, Y(p) is real for real p, then if pk is a pole, pk is a pole also. We
can then regroup the terms to get another representation

Y<V) = r-° + V  2r'P    = + y; o2r"P ■
V lmpi>0 (p — pk)(p — Pk) P imTTto V3 - pl

Forming the common denominator and writing this expression as a fraction, one recog-
nizes it as identical with that given by Foster.

19. Behavior of P(i, v) as | i | + | v | —* co. In theorem 3, section 8, it was assumed
that the matrix A was positive definite and B(v) + | yv | —> oo as | v | —* «>. Similar
conditions are assumed for theorem 4. If the circuit is complete, these conditions are
easily checked through the submatrices a, /3, and y given by (13.2).

From (13.10) and the fact that the resistors in r — r' are linear, it follows that the
matrix A has the form

A = aRa.T,

where R is a diagonal matrix and the diagonal elements are the resistances of the branches
in r — t'. Since a is a I — 1' X t — t' matrix and R&t — t'Xt — t' matrix, then
clearly A can be positive definite if and only if the diagonal elements of R are positive
and a has rank I — I'. This implies, in particular, that t — t' > I — V, i.e., the number
of resistors in r — t' must be at least equal to the number of inductors.

In order to evaluate the condition B(v) + | yv | —» oo as | v | —> <», we refer to (13.11):

B(v) = f (prg(pv), dv), (19.1)
Jo

where g((3v) is a column vector with the pith element g„(w^) which is the voltage-current
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characteristic of the resistor in the /xth branch, n t £'. In section 3 we assumed that a
resistor characteristic must be in the first or third quadrant and monotone increasing
there if | v | is large enough. A less stringent condition is

Sj^- > 6 > 0 for all I w I > K, (19.2)w — ii'

where 6 and K are positive constants. We shall assume this and show that B(v) +

I I —^ 00 as | u I —oo if and only if the combined I X t' matrix has rank t'.

Using (19.1) and (19.2), B(v) can be estimated from below by \d | /Sy |2 if | v | is
large enough. Thus

B{v) + | yv\2 > 5(| M2 + I yv |2)

where S is some positive constant. It is clear from the right-hand side that if the matrix

has rank t', then

B(v) + | yv |2 > 8, | v |2,

which proves the "if" part of the statement. On the other hand, if has rank less

than if', then there exists a vector v = v0, which is a nontrivial solution of the equations

\v = 0.

Using the mean value theorem,

g(@v*)

yv 17 J
yv

B(v) + | yv | =

and with v = \v0 , we have

B(\v0) + | \yv0 | = 0.

Hence, B(v) + | yv \ does not approach «= for all 1 u | —> m, which proves the "only if''
part of the statement.

In summary, we have proved that A is positive definite if and only if a has rank
I — I' and R is positive definite, and B(v) + | yv | —* <» as \ v | —> °o if and only if the

matrix has rank t'.

These conditions can be interpreted as follows. Using the notation of section 13,
if vn>, v(i), vw are all zero, i.e., all the voltages outside of £ — £' are zero, then by
equations (13.3) we have

avm = 0.

Thus, if a has rank I — I', then v<2) = 0, i.e., all the voltages of £ — £' are also zero.
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Similarly, if v(2), v(3>, vu> are all zero, i.e., all the voltages outside of r' are zero, then
equations (13.3) yield

-yvm = 0,

-/3y(1) = 0.

Therefore, if the matrix (^j has rank t', then wa> must also vanish, i.e., all the voltages

of r' are zero.
For the conditions of theorem 4 one is led to the requirements that /3 must have rank

t' and must have rank I — V.

20. Periodic solutions for periodically forced networks. We consider a nonlinear
electrical network which contains a time-varying periodic voltage source and, given
certain conditions, we shall prove the existence of a periodic solution of the same period.
A theorem of this type has been proved by R. Duffin [2] for electrical networks with
n degrees of freedom in which he assumed that only the resistors could be nonlinear
and that they must be quasi-linear, i.e., the slope of the voltage-current characteristic
must be positive everywhere. Duffin also proves the uniqueness of the periodic solution,
but this does not hold, in general, for other types of nonlinearities. Levinson [13] proved
the existence of a periodic solution for a nonlinear second-order differential equation
with a periodic forcing term. The nonlinearities considered in Levinson's paper are
more general than those considered here*, but our results apply to systems with n
degrees of freedom.

We first consider a network 3l0 which contains no time-varying elements, which is
complete, and its mixed potential P0 is semi-linear of the form

P0(i, v) = — (i, \Ai + a — yv) + B(v). (20.1)

In the theorem to be proved we make assumptions which imply that the network 910
is asymptotically stable; essentially, we make the assumptions of theorem 3, section 8.
The time-varying network 91 is composed of 3Z0 and a periodic voltage source E(t)
attached as shown in figure 20, and we want to prove that this circuit has a periodic

Fig. 20. Periodically excited network.

solution. We also assume that the voltage source is attached so that the current i0
through it is determined by the set i of the currents through the inductors. Thus, 91
is also complete and semilinear and its mixed potential is

P(i, v, t) = P0(i, v) + E(t)i0 (2Q ̂

= — %(i, At) + (t, yv) — (i, a — e(i)) + B(v),
*The nonlinearities considered in Levinson's paper are allowed to be of the form f(v, dv/dt).
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where e(t) is a vector with elements E{t) or 0. The system of differential equations to
be solved is

L(i) j. = — Ai + yv — a + e(t),1 (20.3)

C(v) ft = -yTi - B,(v).
Since 91 is complete, according to the discussion of section 13, we know there exist
matrices a and such that

A = aRaT, (20.4)

and

B(v) = f (J3Tg(0v), dv). (20.5)
Jo

Here, R is a diagonal matrix with elements R„ , the resistances of 91; , and g(\) is a
column vector with elements gM(X„), the voltage-current characteristics of the nonlinear
resistors in 91, .

Theorem 13: We assume that
(1) L(i), C(v) are positive definite and their eigenvalues bounded away from zero

for all i, v.
(2) The constant matrix R is positive definite.
(3) a has rank I — I' (the number of inductors) and the combined matrix of j3 and y

has rank t' (the number of capacitors) .*
(4) gli(w)/w > 0 > 0 for all | w | > K with some positive constants 6, K.
(5) || L1/2(t)A_17C~1/2(u) 11 < 1 — 5 with some 5 > 0.

If e(f) has period T > 0 and is continuously differentiable, then the system (20.3) has
at least one periodic solution of period T.

Remark: Condition (3) expresses that sufficiently many resistors are present while
(5) imposes a condition on the size of L.

Proof: For the proof we shall construct a closed set D in the phase space with the
coordinates x = (ii , • • ■ , ir , v i , • • • ,v,) and t = 0 with the following properties:

(a) All solutions with initial values in D will for t = T lie in D again so that the
mapping M defined by following the solutions from t — 0 (in D) to t = T maps D
into itself.

(b) Topologically, D is equivalent to the sphere | x | < 1. Then it follows from
Brouwer's fixed point theorem (see S. Lefshetz [14]) that the mapping M possesses
a fixed point in D. The solution initially at this fixed point returns to the fixed point
for t = T and is therefore the desired periodic solution.

For the construction of the domain D we use the pair J*, P* which was introduced
in section 8 (for theorem 3):

P*(x, t) = P(x, t) + (P, , A~lP,),

L(i) 0 1
-2yT A'1 L{i) C{v) j

J* (20.6)

*With the notation of (13.1), the I X t' matrix (cu , Cn) should have rank V.
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As in section 8, one finds

|p.(x, ,)=-(! + (20.7)

In case e is time independent, the last term vanishes while the first term is always nega-
tive. Our aim now will be to dominate dP*/dt by (dx/dt, J* dx/dt) for sufficiently large |x|.
The domain D will be defined by

P*(x, 0) < p (20.8)

for large positive p. We will derive now that the assumptions of theorem 13 imply the
properties (a) and (b) of the domain D.

To estimate dP*/dt we use (20.6)

dP* _9P J d2P
at at \at ai' ai) '

and (20.2)

T = (si ' Z ^ yv — a + e(i)]^-

Since de/dt is bounded for all t, we have

dP*
at <c(|* | + \v | + 1), (20.9)

with some positive c. Hence, dP*/dt grows at most linearly with | x |.
Next it is our aim to show that (dx/dt, J* dx/dt) grows at least quadratically with

| x |, thus dominating dP*/dt. For this purpose it is convenient to introduce new variables
■y by the linear transformation

y = Sx — b, (20.10)
where

S
— A 7

0 I
b = a — e(t)

0

which was introduced in section 8. Then P*(x, t) transforms into

Q(y, t) = P*(x, t) = UVi , A~1y1) + U(y2), (20.11)

(see 8.10) where

yl = — Ai + yv - b, , y2 = v,
and

U(v) = mi ~ yv), A_1(6i - yv)) + B(v). (20.12)
To prove our statement we will use now the variables y which are related to the x

by a nonsingular linear transformation. We shall derive the remaining estimates from
the following lemma.

Lemma. With some positive constants c > 0, cx > 0, we have

(-S)dy,>c\y\> for \y\>c1. (20.13)
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We postpone the proof to the end and first show how theorem 13 follows from this
lemma. The left-hand side of (20.13) can be considered as a radial derivative of Q,
namely with | y | = r, we have

dQ 2 r .r —~ > cr for r > Ci ,

or

dQ
dy

dr

> > c | y | for | 2/ | > Ci , (20.14)

and integrating,

Q | > 2 I V I2 ~ c* for I y I > c! • (20.15)

To estimate the right-hand side of (20.7), we use that P* = STQV and the conse-
quence of assumptions (1) and (5):

(f: = (J*~lp*'P%) - 5l 1 p* |2 - 521 Qy |2'

and because of (20.14)

(I ' J* I) ^ 53 1 V |2 f0r 1 V 1 - °3 *

From (20.7) and (20.9) it follows

+ f <-fl»r for I # I > C. • (20.16)
For the construction of the domain D', defined by

Q(y, o) < p,
we choose p so large that the sphere \ y \ < c3 is contained in D'. This is certainly possible
since Q is continuous for all y and tends to m only as | y | —> m. To show that D' is
topologically equivalent to the sphere | x \ < 1, we observe that D' is starlike: for every
ray y = rrj (with a fixed r?, | r? | = 1), the function Q(y, 0) is by the lemma a monotone
increasing fimction of r for sufficiently large r. Since also Q —> °o as r —> o° (by (20.15))
it follows that the boundary Q = p of D' intersects every ray at exactly one point
y = R(n)ri (for sufficiently large p). Therefore, D' can be represented in the form

I y I < Rbi),
where R(ri) is a continuous function of tj and, say, R(y) > 1. This set is topologically
equivalent to a sphere since one can just map D' into 1 x | < 1 by the continuous mapping
which takes y = rij into x = (r/R(ri))i).

Let y(t) be any solution for which the initial values belong to the boundary of D'.
Then Q(y(t), t) decreases (by (20.16)) as long as | y(t) \ > c3 and, since Q(y, T) = Q(y, 0),
then y(T) belongs to D'. Therefore, the mapping y(0) —» y{T) takes the boundary of
D' into D' and, since D' is topologically equivalent to a sphere and the mapping con-
tinuous, one-one, D' is mapped into D'.
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Applying Brouwer's fixed point theorem to the mapping y(0) —> y(T) defined in D',
we find a fixed point y*(0) in D' and thus a periodic solution y*(t) with period T.

It remains to prove the lemma which, by (20.11), takes the form

(2/i , A"Vi) + (2/2 , UVa) > c | y |2 for | y | > Ci .

Since A-1 is positive definite (see (20.4) and assumption (3)), it suffices to prove

(v, U,) > c | v |2 for large | v |. (20.17)

From (20.12) we find

(v, U.) > (yv, A~'yv) - | v | + (v, Bv)

> 8 | yv |2 + (v, B„) — 5X | v | for large | v |,

where S > 0. Using (20.5), we have

(v, B,) = (J3v, g(j3v)) = w„g»(w„),
M

where w = fiv. By assumption (4) this can be estimated by § 9 w2 from below, and
we find

(jv, TJ,) > 52(| yv |2 + | I3v |2) - 5i | v | for | v \ > c4 .

Since by assumption (3) yv — pv = 0 implies v = 0, the estimate (20.14) follows. This
completes the proof of the lemma and, hence, the proof of theorem 13.
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