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UNIFIED FORMALISM OF THE LINEARIZED COMPRESSIBLE FLOW FIELDS*

BY
IWAO HOSOKAWA**

Brown University

1. Introduction. The steady motion of an inviscid, non-conducting, compressible
fluid is governed by a complicated nonlinear equation. The difficulty of solving this
equation has led many authors to the extensive use of a linear approximation to the
original equation based on the assumption of a small disturbance in the flow field, in
particular in application to aeronautics (see Ward [1]). The flow field given by such a
conventional linearization, however, has a divergent discontinuity at a free stream Mach
number of = 1. Therefore, any successive approximation method starting from the
linear equation is not uniformly convergent at the point Ma = 1. In order to avoid
this difficulty, the so-called transonic approximation to the flow equation was proposed
by Oswatitsch, von Karman [2] and others. This approximation retains one of the non-
linear terms of the original equation in such a way that the solution is the first approxima-
tion to the compressible flow field and is no longer divergent for = 1, but the non-
linearity so retained is obviously very inconvenient for general analysis. For this reason,
the linearized transonic flow theory has been developed by Oswatitsch and Keune [3]
and Maeder and Thommen [4], This linearized theory simplifies the transonic approxima-
tion by linearizing the nonlinear term in an appropriate way (see (2.1)). It may be
said that this theory succeeds at least in achieving the continuity of the flow field transi-
tion through M„ = 1, though it is questionable whether it is really the first approxima-
tion to the original flow field. The author's recent approach [5], however, shows that based
on this linearized transonic flow field, the equation of the transonic approximation can be
solved at least in the neighborhood of a suitable class of thin bodies. This solution is in the
form of the linearized transonic flow field plus a compensation term which embodies the
influence of the nonlinearity.f

It seems worthwhile to prepare the solution for the linearized transonic flow field in a
general form as was done by Ward [1] and others for the linear sub- and supersonic
theories. Such a general solution, on the other hand, holds a new mathematical interest;
it is obviously desirable to treat the sub- (elliptic) and supersonic (hyperbolic) flow
fields simultaneously in a unified manner including the case of Ma = 1. There has been
some trouble in completing the parallelism of the two fields, or unifying them, because
special accounts about Hadamard's finite integral, the Mach cone, etc. are needed in
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the supersonic case. Nevertheless, the above desire is realized if the fields are described
in terms of distributions which are developed here. Such a unified formalism is useful
for understanding the separate knowledges of sub- and supersonic theories of wings and
bodies. The method of distributions was first applied by Dorfner [8] to the three-dimen-
sional supersonic problem of gas dynamics. In this paper, the original representation
of distributions by Schwartz [9] is used for a clear understanding and to avoid any confu-
sion of distributions with functions. As an example, the flow around a thin wing is dealt
with in some detail, and some new results on the lifting problem are added.

2. Basic equation. The basic equation of the linearized transonic flow theory is
written as follows:

(1 — Ml)<pxx + <pvy + <p„z = K<px , K > 0, (2.1)

where <p is the disturbance velocity potential normalized by the free stream velocity
Uco, K is a certain constant for the transonic linearization and x is taken in the direction
of the free stream, the subscripts x, y, z indicating differentiation with respect to the
coordinates. This equation is well known as a convenient simplification of the so-called
transonic approximation to the flow equation

(1 — Ml)<pxx + <pyy + <pZ! = (y + 1 )Mi<px<pxx (2.2)

(see [10]), where y is the ratio of specific heats. The terms on the right-hand side in the
above equations will tend to vanish in comparison with the other terms as increases
or decreases from unity, so that we have the conventional linear theory in the limits.
Equation (2.1) may therefore be called the extensively linearized compressible flow
equation. As regards discussions of possible refinement of the approximation and how
to deal with the constant K, the reader is referred to [5], [6] and [7].

For convenience of notation, the following new quantities are introduced:

I32 = l - Ml = -m2, a = K/2/S2, (2.3)

£ = x, v = Py, f = /Sz, (2.4)

<Po(t, V, t) = e~aS:<p(t, V, ?)• (2.5)

Equation (2.1) thus reduces to

(Al — a)<p0 = 0, (2.6)

where At is the Laplacian in the (£, 77, f)-space.
Since rj and f are imaginary for M „ > 1, the quantities £, 77, f constitute a pseudo-

Euclidean space. The effect of the imaginary quantities reveals itself in a scalar invariant,
as is seen for

(f + V + ?)W2 = (*2 - (Ml - 1 )y2 - (Ml - l)z2Y/2 (2.7)

which is, in fact, a Minkowski-type distance. The case M„ = 1 gives rise to a = ± 00 f
and should therefore be excluded, but the solution for <p at Ma = 1 can be obtained
successfully by a limiting process afterwards. In case K = 0, the equation is reduced to
the conventional linear theory.

In case K ^ 0, however, a new feature different from the former appears. The veloc-
ity potential caused by a vortex distribution cannot be obtained explicitly as easily
as in the former case. This fact makes it impossible to treat the problem of lift conven-
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iently by the superposition of vortex-lines or -sheets, as in the lifting line theory, and
the flow reversal theorem cannot be derived. As a result, the most successful way to
complete the solution subject to each boundary condition for all seems to consist in
the application of the extended Green's theorem, which may be understood as the method
of sources and doublets and is most naturally and inclusively formulated by the use of
distributions.

3. Unified general solution. First, the extension of the field to a distribution
(see Appendix) is made as follows:

<£> = <£>H, (3.1)

where the function H (£, rj, f) corresponding to H is defined as unity inside the boundary
(within the flow field) and zero elsewhere, and is redefined here to be a regular function
in the whole space. Multiplication by e~al yields

<£>0 = Va H. (3.2)

Next, application of the operator (AL — a2) to (3.2) furnishes

(A* - a2)<g>o = [(A* - a2 Vo]H + + £ A]" * H1 (3.3)
i.v.s "Z "s t.i.r "cL

(see (A14)). Since the first term of the right-hand side vanishes, (3.3) reduces to

(AL — a)<Q o = G (3.4)

f.i.r .< Lc
d<Po R -1- d R

<»£,£,>< ~r <p0C£-£„i> "£.£•<•)>. "t.toi- " TTUU-toi) "S.toi (3.5)
-«?(£-£..)

Here l£oi corresponds to the so-called delta function 5(£ — £0). Similarly 5f,r corres-
ponds to S(08(ij)«(f) (see (A3)-(A6), (A8), (A11)-(A13)).

In order to obtain the explicit expression of<g>0, it is useful to know the fundamental
distribution f which satisfies

(AL - a2)f = 6£,f . (3.6)

The function corresponding to f is given as

/(?, V, f) = -e"°74xp for < 1 (3.7)
[ — cosh (ap)/2irp, £ > [-(„2 + f2)]1/2 for Ma > 1 (3.8)

0, elsewhere,

where p — (£2 + -n + f2)1/2- The proof of these consists in showing that

JJJ /(£> V, f)(Al — a )</>(£, v, f) d-ri d£ = 0(0, 0, 0),

because (3.6) leads to f[(Aj, — a2)<£] = S£„r (see (A2), (A9)).
Now, making a convolution between (3.6) and G, we have

(Ai — a2)f*G = 5{„f*G = G (3.9)

(see A16)). Comparison between (3.4) and (3.9) thus results in

<£>o = f*G. (3.10)
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(No non-vanishing solution exists for a homogeneous linear equation of a distribution.)
This corresponds to what is called the extended Green's theorem. If we take account of
(A18) and (A19) in the Appendix, the function corresponding to (3.10) inside the bound-
ary becomes

*.(?, v\ n = I ft. v, tw - f, u' - v, r - r) ds
- I <Po(lt, v, f) fv ft' - f, v' - v, r - f) dS, (3.11)

where indicates the surface integral taken over all the boundaries and d/dv is the
normal derivative at the surface element of the boundaries in the (£, 77, f)-space directed
towards the interior of the flow field. Outside the boundary, we have

° = I 3? (L ~
- I <po(h, v, r) ~ ft' - i, u' - u, r - r) ds, (3.12)

which shows that there must in general be some relation between the source (d<p0/dv)
and the doublet (<p0).

Returning to the field <g, we obtain the relation

.5 = e°J(f*G) (3.13)

= (e"ff)*(e°£G). (3.14)

Its formal interpretation of the same kind as (3.11) is

*(F, n = I ^ ft, *, f)e"<£,-£,/ft' - f, u' - n, r - r) ̂
- jB *>ft, V, t)ea(r-v fv (r - u' - v, V - f) (3.15)

The scalar product (d/dv)-dS is always a real value. For the case of M„ > 1, it is noth-
ing more than the product of the surface element and the conormal derivative there in the
real space, and the domain of integration is contained within the upstream-Mach cone
as a result of (3.8).

In the limit, when M„ is equal to unity, we have

ea(Kt V, D =
1 exp [—a(i?2 + r*)/2£]
t £

0, £<0,
4t £ * > 0' (3.16)

and

a(v2 + f2) = K(y2 + z2)/2 (3.17)

from each expression of (3.7), (3.8). This insures continuity of the solution with respect
to Mo„ at Ma = 1. Thus, (3.13) through (3.15) give a unified solution of (2.2).

The source and doublet distributions are decided subject to the boundary condition
physically set in each case. An example of the application to a special boundary condition
is given in the next section.
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4. Solution for a thin wing. Since the location of the boundary can be approximated
by a plan-form included in the plane z = 0 in the small perturbation treatment, (3.5)
is reduced to

G = ( <Po , Vn )sf + (vo<i--+<» — Vo<r--o>) xz ■ (4.1)
wftr-+o) of(r--o)/ "s

Hence (3.13) and (3.14) become

iq = ea£^A 5f*f + A<p05r*— f^ (4.2)

= A ■— Sr*e"£f + Aiph^*eai — f, (4.3)

where A denotes the difference of the subsequent quantity between the two surfaces
of the wing plane at f = 0. Since / is symmetric with respect to this plane, the first and
second terms in (4.3) are the symmetric and antisymmetric parts of <£>, respectively.

Symmetric Problem. If we denote the boundary of the wing as

Z = (±1/2)Z.(x, y) + Za(x, y), (4.4)
where the double sign corresponds to the upper and lower surfaces, and apply the linear-
ized boundary condition

9Z .. dtp .. -s— = lim f- (4.5)
dx z—to oz

on the respective surfaces, the symmetric term of is found as

*'*"<■ <46)

Indeed, with the aid of (3.7), (3.8) and (3.16),
_1_ ff dZ, e°u'~x> exp { -a[{x' - x)2 + tf{y' - y) + /3V2j1/2} , ,

- 4t J/Wins to l(x' - z)2 + p\y' - y)2 + fz'T* V
for Ma < 1, (4.7)

= [f2tT J,wing, x<x' — m [ (y ' — y) 3 + 2 ' a J 1 /3

cosh fa[(x' — x)2 — m2(y' — y)2 — m2z'2]1/2}
[(x — x)2 — m2(y' — y)2 — m2z2]

  Iff Mi exp \ -K[(y' - y)2 + z'2]/4(:e' - x)} ^ ^
4x J wing, i<j' dx x x

for M„ = 1. (4.9)
The corresponding solution for a two-dimensional airfoil is readily derived by inte-

gration of (4.7) through (4.9) with respect to y. Thus,

-1 dZ,
<P(.)

dZ,
dx

2-71^72 dx dy for 1, (4.8)

I fe°("-^o{a[(x> - x)2 WD dx, M„ ^ 1, (4.10)
1 nX ml *' I 77

~2^ Jo W - x)2 - ™2*'2]1/2} <&, Jlf- ^ 1, (4.11)

1 r' exp [~Kz'2/A{x' - a;)] , .
~2£K?»L~te (?^p—dx> n--1' (4-12)
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where K0 and I0 are modified Bessel functions of the second and first kinds respectively,
the chord-length of the airfoil is taken the unity of length, and the leading edge is located
at the origin.

Antisymmetric Problem. The main work in this problem is to determine the unknown
A(p on the basis of the boundary condition.

First, differentiating the second term in (4.3) with respect to f,

^(<t) = A^5f*e"£^f (4.13)

By use of (3.6) and the formulas of distribution, (A14) and (A17), this is reduced to

[("' ~ k ~#«<•> = w|>" - k- ~ + 8
dAy e J d , dA<p B „{ d_* *'V* + 2aje" f - - f + A*S, . (4.14)

Hence, on account of the boundary condition (4.5) applied to the antisymmetric part,
we have an integral equation for Ay.

w -IL. d~t (k+'• °»■*>
+ ff it e"(X'~X> - v,0)dxdy. (4.15)

J J Wing + Wake "7/

(Since z ^ 0 in the limiting process z —> 0, the last term in (4.14) does not contribute
to (4.15). No account has been taken of the discontinuity of d(p/dx on the wake since
the pressure is continuous there.)

On the other hand, let us notice the interesting fact that we can have another con-
venient equation by introducing a new distribution h such that

= (4.16)

and consequently,
d dA<p . .

5f*h' (4'17)

Hence, another integral equation,

= ^ /Lin ~ ^ 0) ̂  dy' (4'18)
is established in place of (4.15). Here /i(£, rj, 0) is easily given as

v, o) = tffi'iy+M1'' [x + (*2 + mi/2' for M- -1 (4-19)

'l eax eoUx'-m'y')'/'[x-(x2-m2y2)1/2]+e""x'"n'y')1/'[x+(x2-m2yy/2}

2tPY 2(x2 — m2y2)1/2 ' x > m \y\

for M„ ^ 1. (4.20)

0, x < m \y\
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(Start from the identity relation: —2a(d/da)ea(lTl,) /p = (d/d£)e0'<f1Fp>(£ ± p)/p where
<r = V2 + ?■)

Equation (4.18) is simpler than (4.15) since the former has no surface integral over
the wake. However, a further general analysis of these is beyond the scope of the present
formalism. In fact, even in the simplest case of incompressible flow it is not easy to
solve (4.15) or (4.18) without using Jones' approximate method which assumes a suitable
expansion and determines its coefficients. Equation (4.15) is essentially a direct extension
of the integral equation given for such a case by Robinson and Laurmann [11] for the
general case of compressible flow.

In the two-dimensional case, we can carry out a far simpler analysis in order to get
the following integral equations for the lift distribution:

dZa _ _a/3 r' dA<p
dx' 2ir

am

Jo ^ X^K^a I*' ~ + KMX' ~ *)]} dx for Mm g 1 (4.21)

Jo (X' ~ X)] dx~J Jo ^ea<I'"">7o[|a| (*' ~ x)] dx

_r±d*S_e„.h[\a\x,] for (4.22)
6 C£»£(x' = + 0)

These are derived directly from the following modification of (4.14):

d _ dA<p e a{/ d_
d^M = h*e" \a ~ dz)f + (4'25)

d A<p d2A<p\ dA<p
dx dx2 / f i E' dx

*ea f ~f- A^5f
(4.26)

where AEi denotes a discontinuous jump, if any, of dAip/dx at the edge of the airfoil
x = xEi .

It is reasonable to assume that (4.21) should be associated with the Kutta-Joukowski
condition at the trailing edge, dA(p/dx(l) ^ 00, as we did in the conventional linear
theory (a = 0). Thus, this can be uniquely solved by successive approximations accord-
ing to Muskhelishvili's method [12] for a singular integral equation. On the other hand,
(4.22) can be solved by the Laplace transformation with ease. In particular, we have

dZ„ 1 (K\/2 r1 dAtp dx cur-, /, r»o\
= ~2 V / J, in?'-*)™ <°r M--L (4'23>

which is a well-known Abel integral equation.
5. Conclusion. Within the frame of the linearized transonic flow theory, the

velocity potential of compressible flow was formulated in a unified manner. The principal
formalism was conveniently given in terms of distributions. As an example, the flow
around a thin wing was analyzed, and a general method of solving the lifting px-oblem was
considered. The obtained formulas completely cover the conventional sub- and super-
sonic linear theories in both limits a = ±0. Similar formulations should be possible
for the flow around a slender body. In conclusion the writer would like to express many
thanks to Professor P. F. Maeder of Brown University for his encouragement and
support of this work and to Professor W. Prager of IBM Research Laboratory Zurich
for his advice concerning the presentation of the material.
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Appendix
Notations and Formulas Concerning Distributions

Distributions are denoted by bold face characters.

Al. F(0) = JJJ F(v, £)<£(£> V, f) di) df
-co

<t> is a so-called testing function.

^ |F» = "F(|)

A3. 5{,f(<^) = </>(0, 0, 0) = JfJ 5(£, i), f)</>(£, 57, f) c??7 df
— CO

A4. Sfiir.io^.r.W = <A(£o , 170 , f0)

A-5- S£,,£0,0(<^>) = [ </>(£0 , Vo , f) df
J — CO

CO

A6. 5{,|„fa) = JJ <f>(Zo , v, f) dti d{
— 00

CO

A7. 5£,0,(^>) = J J <f>(ay, y, drj df
— CO

CO

= all l/a' = a 5"{/°

A8. = E(±).-5i,f..

i? is a three-dimensional unit function which vanishes except in a certain volume of
space; £0< denotes the $ coordinate of the i-th boundary point for definite values of 17
and f, where there is a unit step in H; (±), indicates + for a positive step (from zero
to unity).

A9. r(£, t], f)F(0) = F(r0)

A10. |f.4W,,. + |

AF0 is a jump of F at £ = £0(?7, f); 3F/8£ is a distribution corresponding to dF/d£.

All. t),foijofo r(fo > *7o t .{oijofo

A.12. 7"(£, 7], o»7o = r(£o > *?0 >

A13. r(£, 77, = r(£0 , 17,
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A14. ^ (rF) = g F + r ~ F + Ar/& , 71, f)5£,{.

Ar0 is a jump of r at £ = £0 •

A15. F.G _/// (F*G)<t> dl; dr) d£

* denotes a convolution product.

A16. 8{,f*F = F

A17. | F*G = f)*G = F*(^ g) = AF0h(.£,*G + ^*G = JJJ <f> d£ dv d?

X [JJ (?(£ - v ~ v', t ~ f) dF(?; v', f) dr;' eZf (Stieltjes integral)

A18. Z F*(±), —5£,£cj = f[[d?dv'dt'*(r,n',n E (±).-
— CO

• [[ ne - &, ,v' - v,r - r) ^ ^

= /// 0(r, ij', n Jb -1, *' - v, r - r) df

A19. Z 77 F*(±)<T(f.£„i)5£,{oj
f.ti.r.*-

CO

= -/// <*r <&?' *(r, u', n [b £ *xr -1, u' - n. r - rM*. *, r)

Here JB d/S denotes integration over the surfaces formed by the trace of (£0; , Voi , toi),
and d/dv is an inward (towards the region with H = 1) normal derivative at dS. More-
over, this integration should always be understood in the sense of Hadamard's finite
integral as well as Cauchy's principal value; indeed if F is singular at a certain point,
we have the additional term in (A19) on account of (A17) with AF0 = 00, so that it may
cancel out the infinity caused by a highly singular kernel in the integral term. (This may
be seen by investigating a simplified equation based on (A17).) Thus, all integrations
over the wing and wake in the text are understood in the same sense. If F has a finite
discontinuity, obviously the corresponding additional term derived from (A17) should
be added on the right-hand side of (A19).
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