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\p(x) = fi(a + bx2) + 0(/T5), <f>(x) = —/3(cx + dx3) + 0(h~5), where

A0 , Al , 6Al - A1 , 6A„4 - 3^0^! - 2B
a = 1 + ^ + ~2+ " 3 1 +h ' h2 1 6 h3 ' 6h

Al. _ A°A> _ i° i , 6^02g0 - fi, _ J?,
~2h3 2/i4 ' C h2 + h2 + 6/i4 ' 6/i4'

It is then a simple matter to obtain

uz(r, h) = (2e/7r)(l - r2)1/2[c + d(4r2 - l)/3] + 0(/i"5), 0 < r < 1,

<r„(r, 0) = —/3(1 — r2r1/2(a - b + 26r2) + 0(/i-5), 0 < r < 1.

It is interesting to note from the above expression for ujr, h) that since c = ),
the effect of the hole in the foundation is negligible when h is so large that terms of
order h'2 can be ignored. For in this case uz(r, h) would be zero for all r, which is the
boundary condition one would use in place of (4) and (6) when the foundation contains
no hole.
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ON THE OSCILLATIONS OF A PENDULUM UNDER PARAMETRIC
EXCITATION*

By R. A. STRUBLE (University of North Carolina, Raleigh, N. C.)

In a recent paper [1], we examined the oscillations of a pendulum under parametric
excitation using a formal asymptotic method. It is the purpose of this note to point
out that the general behavior suggested for this system may be corroborated through
the application of a new mapping theorem due to Moser [2].

Consider the nonlinear equation

^ o ~ cos wtj sin 0 = 0, (1)

where co, co0 , £o and L are positive constants with £0/L small. This equation depicts
the motion of a simple pendulum which is excited parametrically by small, vertical
vibrations of its support. (See [1]). The free motions for £0 = 0 are well known [3] and
can be described by the energy integral

1 (dd\2 _
2\dt) co2 cos d = E. (2)
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There are both oscillatory and rotary motions which are periodic and depend upon the
magnitude of the energy constant E. The first result we wish to state concerns nonreso-
nant solutions of Eq. (1) in a neighborhood of one of these periodic free motions in the
appropriate phase plane. (For oscillatory motion, 6 and dd/dt become rectangular
coordinates while for rotary motion, 6 and dd/dt become polar coordinates.)

Theorem 1 (Moser): Let rE denote a periodic trajectory (2) in the phase plane and
let PE denote the corresponding fundamental period. Then there exists a positive 5,
depending upon YE and upon a positive number p (See (3)), such that for all %0/L < 5
and nearly all excitation frequencies there exists a manifold of almost periodic solutions
of (1) with basic frequencies 2ir/PE and co and which emanate from all points of a closed
curve T lying near rj; . Specifically, it is required that co satisfy the inequality

2n,T ^ -3/2 /o\wco —— > pn (3)
* E

for all integers m and positive integers n. (The numbers co so excluded have a density
which is small if the number p is small.) A proof of this theorem is given in [4],

The frequencies which violate (3) are the resonant frequencies of (1), i.e. the fre-
quencies which are nearly rational multiples of the natural frequency, and necessitate
special treatment. As the excitation frequency co approaches one of these resonant
frequencies one might expect to observe a long-period beat superimposed upon an
otherwise periodic response, as suggested in [1], For an oscillatory type motion of small
amplitude, this expectation is borne out and is exemplified by Theorem 2 below.

Following [1], let us introduce the dimensionless time t = wat and put

€ = %a/L, d = e1/2X, 77 = w/w0 , m = (2 —

Then, if we define new dependent variables (a, y) through the transformation

X = a cos Uvt — y), ^ a sin §(tjt - 7), (4)

Equation (1) can be shown to be equivalent to a system of the form

1 dy a2 rj2 (ria2 \ , ^
~ ^ = - m + — + — cos y + cos rjr +  mj cos (rjt - y)

■na2
+ 77 cos (2t)T — t) + 4g cos (2i7t — 27) + 6/i(e, a, 7, t),

1 da ri2a . 17?a3 m \ . , N -na .- j- = — sm 7 - I — - — a I sm (tjt - 7) - 17 sin (2t,t - 7)dr_4olu/ \48 2 aJauiv" rj 2

- ~ sin (2Tjr - 27) + e/2(e, a, 7, r), (5)

where the detuning parameter m is to be held constant as e —> 0. This is the primary
resonance case in which the frequency ratio 97 -—> 2. The higher order terms fi and /2 in
(5) are analytic in (a, 7) and are periodic in r of period 2t/77.

A first approximation to this system (which may be obtained here by averaging
with respect to r the first order terms in (5)) has been discussed in [1], The approximate
solutions are described by an energy type integral

„4 2„22 I 0/ . 7j d-ma + — + — cos 7 = c (6)
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which represents one or more families of closed trajectories in the phase plane (here,
a and y become polar coordinates) with appropriate separatrices and singular points.
The closed trajectories depict periodic solutions (long-period beats of the motion) and
the singular points correspond to stationary oscillations, i.e. periodic solutions of (1).
By arguments similar to those used in [5] one encounters no difficulty in proving the
following:

Theorem 2: Let rc denote a closed trajectory (6) of the averaged system. Then there
is a positive e0 , depending upon ro and upon a positive number p (see (7)), such that
for nearly all e with |e| < e„ there exists a manifold of almost periodic solutions of (5)
which emanate from all points of a closed curve r lying near Tc . The excluded values
of t have a density near e = 0 which is small if the number p is small. Specifically, it is
required that t satisfy the auxiliary inequality

„ 2 miremT, > Pn-3/2 (7)

for all integers m and positive integers n, where Tc is the fundamental period in slow
time s = «t associated with rc . (See [1], where Tc = (At.) The basic frequencies in r
of these almost periodic solutions of (5) are 2we/Tc and ij. The former represents the
fundamental beat frequency while the latter merely corresponds to an overtone of the
primary oscillation in (4).

The excluded values of e in Theorem 2 are those for which the beat frequency and
the primary oscillation frequency r\/2 are nearly resonant for a given (relative) detuning
m. These correspond to second order resonance cases and could, conceivably, lead to
beats with frequencies of the order of t . In any event, the numerous manifolds of al-
most periodic solutions of (1) described by Theorems 1 and 2 for various choices of
generating orbits (2) and (6) can be expected to be distributed throughout the perti-
nent regions of the solution spaces rather completely and will, therefore, restrict other
(not necessarily almost periodic) solutions to small neighborhoods of these orbits.
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