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ON THE DAMPING OF A SATELLITE MOTION*
By J. A. MORRISON (Bell Telephone Laboratories, Incorporated, Murray Hill, N. J.)

Abstract. The motion in a circular orbit of a gravitationally oriented satellite,
whose angular motions about the local vertical are damped by a roll-vee, gyrostabilizer
system, is considered, wherein the pitch axis of the satellite remains perpendicular to
the orbital plane. It is shown that no matter how large the initial local angular velocity
of the satellite is, this velocity reaches any given smaller value in a finite time. It is
also shown how it is possible to obtain a bound on this damping time.

1. Introduction and summary. A description of an attitude control system for a
gravitationally oriented earth-pointing satellite has been given by J. A. Lewis and E. E.
Zajac [1]. The attitude control system involves two single-degree-of-freedom gyroscopes
in a so-called roll-vee configuration. In the desired motion, the satellite describes a
circular orbit and has one axis continuously aligned along the local vertical. If at any
given instant the satellite is not aligned along the local vertical with the proper angular
velocity of one rotation per orbit, the gyroscopes precess about their output axes and
undergo viscous damping, so that at least for small initial disturbances the satellite
finally settles out in one of two possible earth-pointing positions.

It is of importance to be sure that the gyroscopes will damp out the angular librations
of the satellite for arbitrary initial conditions, including the case of tumbling. Heretofore
the only available evidence has consisted of plausibility arguments and a limited number
of numerical solutions of the differential equations of motion, for moderately large
initial angular rates. The present paper contains a rigorous proof that for a limited class
of motions (that is, pure pitching motions), satellite damping occurs for arbitrarily
large initial angular rates.

In the motions considered, the satellite revolves in a circular orbit and rotates so
that its so-called "pitch" axis remains perpendicular to the orbital plane. The differential
equations describing this motion take the form

ft" + a2 sin 2/3 + p<p' sin (a — <p) = 0, (1.1)

<p' + [iq<p + <7[sin a — (1 + /S') sin (a — <p)] = 0, (1.2)

with the initial conditions

<p(0) = <p0 , — — a) < <Po < a) m = 0; /3°(0) = co0 > 0, (1.3)

where /3 is the angle of rotation of the satellite measured with respect to the local vertical,
and the dot superscript denotes differentiation with respect to time. The gyros are sym-
metrically situated with respect to the pitch axis and hence only one gimbal angle <p
appears above. It is assumed that the gyro stops are at <p = a and <p = a — (x/2),
i.e., there are ideal stops along the pitch and yaw axes. The constants satisfy

a > 0; m > 0; p > 0; q > 0; 0 < a < |* (1.4)

*Received August 15, 1963.
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The question of interest here is whether or not it is possible for the satellite to undergo
such motion without damping occurring. We show in the next section that, given any
0 with 0 < Q < w0 , P' cannot be greater than Q for all t > 0. The proof is by contra-
diction. A numerical investigation has been made1 of the damping of the satellite for
moderate values of u0 . The result here shows that, no matter how large the initial local
angular velocity of the satellite is, this velocity reaches any given smaller value within
a finite time. In the final section we show how it is possible to obtain a bound on the
time taken for /3" to first reach the given value 0.

2. Proof by contradiction. We will assume that /3" > 0 for t > 0, where 0 < 0 < w0,
and obtain a contradiction. Under the assumption we may change from the independent
variable t to the variable /3. Thus, let

V = F(J3); ^ = («-*,). (2.1)
Then, from Eqs. (1.1) to (1.3), using primes to denote /3 derivatives,

FF' + a2 sin 2/3 = pFi' sin (2.2)

F\p' = g[sin a. — (1 + F) sin i/-] + nq(a — \{/), (2.3)

with the initial conditions

F(0) = co0 ; i/<0) = \p0 = (a — <p0), 0 < \pa < (2.4)

Since, by assumption, F > fi > 0 it follows from Eqs. (2.3) and (1.4) that

0 < ip < max (a, \p0) < (2.5)

Now, from Eqs. (2.2) and (2.3) we may obtain the energy integral

F2 + a2(l — cos 2$) + 2p f (sin a — sin 8) dd + p^(a — iff + — [ F\p'2 dfi
J f Q Jo

= pfx<pl + 2p f (sin a — sin 6) d9 + to2 = , (2.6)
J j, 0

using the initial conditions in Eq. (2.4). From Eqs. (2.5) and (2.6) it follows that

0 < O < F <co, (2.7)

and that

for all /3 > 0. Hence, if
» (n+1) x

then /„ —» 0 as n —> <*>.
We will suppose that

n (11+ l ) Tr

i'2 W, (2.9)
J nr

< | , (2.10)
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and let

7» = 1\>[n-K + (2.11)

Then, using Schwarz's inequality, we obtain

*(»' + l+«)-7. = I f V dp
I (2n+l) t/2

<

[«S+(2n+l) x/2 ~|l/2 / \l/2

s r2 dp < (| /„) , (2.12)
J (2n+l) t/2 J \4 /

from Eqs. (2.9) and (2.10). Now, from Eq. (2.2),

[F*(|8) — a2 cos 2/3]' = 2pF\p' sin \p. (2.13)

Hence,

F \7iir + -+ 5J = X„ + a(l — cos 28) + v„(8), (2.14)

where
(\ »S+(2n+l) ir/2

n7r + ; vn(5) = 2p / /*"\p' sin \p dp. (2.15)
A' J (2n+1) x/2

From Eqs. (2.5), (2.7), (2.9) and (2.10) it follows that
/»5+ (2»+l) r/2 / \ 1/2

| *„(«) I < 2pco \r I I <Ij9 I < 2pJf /„ , (2.16)
J(2n + l)r/2 \« /

again using Schwarz's inequality.
Finally, from Eqs. (2.3) and (2.11),

[/ \ "1 «8+(2n+l)x/2

rax + 7; + 5) - Y» = ? / {[(sin a - sin f)
\ 4 / J J (2n+l) x/2

+ ju(a: — ̂ OJ/F — sin \p) dp. (2.17)

Thus,
r./ , X A 1 /.a+(2n+i)x/2 J[(sin a _ sin y„) + n(a — 7„)1
In"' + 2+ ') - 7"J+1 L.,„„ t K + ai(i + c«S2«r

— [(sin a — sin ^) + n(a — if)]/F + (sin \p — sin y„) J 43

fl /[(sin a - sin y„) + n(a - Tn)] \
~ q I I [K + a\ 1 - cos 20)]1/2 Sm T"j (2"18)

But, from Eqs. (2.5), (2.7), (2.11) and (2.15),

0 < 7„ < max {a, \[/0) < | ; 0 < 0 < X„ < co. (2.19)

Since /„ —» 0 as n —> <» it follows, from Eqs. (2.12), (2.14) and (2.16), that
| ^(rax + x/2 + 8) — yn | —> 0 and | F2(nir + x/2 + 8) — X* — a (I — cos 25) | —> 0,
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uniformly in | S | < rr/2, as n —> °°. Thus the left-hand side of Eq. (2.18) tends to zero,
uniformly in | 5 | < tt/2, as n —> °°. But, since [(sin a — sin yn) + n(a — yn)] and sin yn
cannot simultaneously tend to zero, and + a (I — cos 20)]~1/2 is uniformly bounded
away from zero, and is not constant, the right-hand side of Eq. (2.18) cannot tend to
zero, for all | 5 | < 7r/2, as n —> . Thus we are led to a contradiction. Consequently,
whatever the value of 0, with 0 < 0 < w0 , the quantity F, i.e., 13', attains the value 0
within a finite time.

3. Bound on a damping time. We may use a similar approach to obtain an upper
bound on the time taken for ft' to first reach a given value 0, with 0 < Q < co0 • Thus,
suppose that /3" = F > 0 for 0 < /3 < vit, for some positive integer m, and consider
this range of /3. Then, from Eqs. (2.8) and (2.9),

/ 2 o2\ f*mw (m—1)

(3-i»
If we show that

> / > 0, (3.2)
then it follows that

- * ^

Hence, F must reach the value 0 for some j3 = /3*, where

«* <<3-4'

Since, from Eq. (2.1),

' = 1 FM' (3'5)
the corresponding time is

T < p/Q. (3.6)
It remains to determine I in Eq. (3.2).

Now, from Eqs. (2.3) and (2.9),
J,»(n+1) t

{[(sin a — sin ^) + /x(« — i)]/F — sin ip}2 dp. (3.7)
nir

Let
J [(sin a. — sin y„) + m(« ~ 7„)]2 f J Ksin a - sin yn) + M(« - Y„)J • I

" 9 JnT { [X2„ + a2(l + cos 2/3)]1/2 sm7n| dp. (3.8)

Define

&(/3) = {[(sin a — sin + n(a — \p)]/F — sin \p}

Now,

[ sin x — sin y \ — 2

/[(sin a - sin y„) + n(a - Tn)] ,
+ I [X2 + a2(l + cos 2/3)]1/2 ^3-9^

sin fx — y\ (x + y\
\ 2 / C0S \ 2 /

^ „ . \ x — y< 2 sin —
<u

<\x-y\. (3.10)
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Also, from Eqs. (2.4), (2.5) and (2.19),

|« - iH < max (a> I |); | « - 7. | < max (a, | <p0 |). (3.11)

Hence, using Eqs. (2.7) and (2.19),

| SW | < 2[l + (1 + ^ max («, | |)] a A. (3.12)

We next define

D(0) = {[(sin a — sin ^) + n(a — \f/)]/F — sin tp}
_ /[(sin a — sin yn) + n(a — 7.)] • \

\ [X2 + a\ 1 + cos 2/3)]1/2 Sm 7"J

= (sin yn - sin if) + [(sin yn - sin if,) + ju(7» - i)]/F

, [(sin a - sin yn) + n(a - -y„)][X^ + a2(l + cos 20) - F2]
+ F[\l + a2(l + cos 20)}1/2{F + [X2 + a2(l + cos 20)]1/2} '

From Eqs. (2.12), (2.14) and (2.16),

I * - 7» I < (| /»)1/2; I F2 - \2n - a2(l + cos 20) \ < 2pco(| I^'\ (3.14)

for nir < 0 < (n + l)x. Hence, using Eqs. (2.7), (2.19), (3.10) and (3.11), we have

I D(J3) I < (| 7„)1/2[l + (1 + M) max (a, | |)] - fi(| J.)"", (3.15)

for nir < 0 < (n + l)x.
From Eqs. (3.7), (3.8), (3.9), (3.12), (3.13) and (3.15), it follows that

I /» (»+l) r

| - Kn\ = q*\ S(0)D(0) dp
I Jnr

< q\AB(J A)''2 (2CIn)1/2, (3.16)

where C is a constant independent of n. From Eq. (3.16) we deduce that

In > [(C + Kn) - {C(C + 2Kn)}u']. (3.17)
Also, from Eqs. (2.19) and (3.8), it follows that

Kn>K>0, (3.18)
where K is independent of n. Finally, from Eqs. (3.17) and (3.18),

h > [(C + K) - \C(C + 2K)}1'2] m I. (3.19)
Undoubtedly the bounds in Eqs. (3.4) and (3.6) are rather poor in general. Improve-

ments are possible, but it does not seem worthwhile to detail them here.
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