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Abstract. A slab, melting under an arbitrary heat input on one face and insulated
on the other is studied. Variable material properties are taken into account. After
preliminary general considerations, it is shown that the solution to the stated problem
is unique. It is then proved that higher rates of melting and higher temperatures will
result from higher heating rates; from this intuitively plausible result upper and lower
bounds for the solution are easily constructed. An example is worked out in detail.

1. Introduction. This paper presents several theorems concerning the problem of
heat conduction in melting (or solidifying) slabs. The principal results are the establish-
ment of a uniqueness theorem, and the development of a simple method for the con-
struction of upper and lower bounds for the rate of melting and for the temperature.
The problem considered is that of a slab, heated in an arbitrarily prescribed manner on
one (moving) face and insulated on the other; the thermal properties are allowed to be
temperature dependent. This problem may be taken to represent the case of a melting
slab, with melted portion instantaneously removed.1

Section 2 of this paper presents two basic theorems concerning the solutions of a
general type of parabolic differential equation with variable coefficients for arbitrary
domains in the xi-plane. The problem of the melting slab is formulated mathematically
in Section 3, and the upper and lower bounds mentioned earlier are constructed in
Section 4. The discussion of Section 5 indicates how these bounds can be applied in the
practical solution of a melting problem, and a detailed example is presented in Section 6.

In the proofs which follow frequent use is made of Picone's Theorem [6], a restricted
statement of which is given here for convenience of reference:

Consider a domain D with boundary B in the (n + l)-dimensional space of points P
with coordinates , x2 , • • • xn , t. Let B_t be that part of B which includes all points P
such that (a) the interior normal to the boundary exists and is directed in the negative
t direction, and (6) each point P is an interior point of JS_( .2 Let u{P) be a solution of the

*Received May 2, 1962. This work was performed as part of a project sponsored by the Office of
Naval Research.

'The solution of this problem is a good approximation [1], at short times, to that of the problem in
which none of the melted material is removed; it may thus be a good approximation also for intermediate
rates of ablation. The present problem also provides a good approximation to the problem of aerodynamic
ablation, provided the Prandtl Number is small compared to unity [2, 3, 4, 5].

2For example, for the domain enclosed by the boundary ABEE'B'A'A in Fig. 2, the portion B_ t
is EE'.
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parabolic differential equation (in class C(2>):

d U . du . du „ (1)
ha"d^+ hb<te+CU~di = 0>

where au{P) = aH(P), bi(P) and c(P) are real finite continuous functions of P, and
where the quadratic form a^XiXj is positive-definite (singular or non-singular).
Then Picone's Theorem states that:

(a) if u > 0 on B — P_, , then u > 0 throughout D, and if u < 0 on B — B_, ,
then u < 0 throughout D;

(b) if u = 0 on B — P_, , then u = 0 throughout D;
(c) if u is prescribed throughout B — B-t , then u is uniquely determined through-

out D;
(d) the maximum value of | u | occurs on B — B_t ; if c = 0, both the maximum

and the minimum values of u occur on B —

A proof of Picone's theorem for the one-dimensional case needed below and for the
case in which the coefficients au , 6, and c are functions of u is given in [10]; all the re-
sults of this paper hold for this case.

2. Basic theorems. Theorem I. Let u(P) be a solution, in class C<2>, of the following
special case of Eq. (1):

at all points P(x, t) of a domain D in the .r/-plane, and let3

g = /(P), P on B-B.t, (2a)

u = 0 at some point Px on B — , (2b)

where nx denotes the direction of the component parallel to the x-axis of the interior
normal to the boundary B. Then,

(a) if /(P) = 0, u = 0 throughout D;
(b) if /(P) is prescribed throughout B — B-, , then u is uniquely determined through-

out D.

Proof. With v = (du/dx), differentiation of (2) gives (differentiability of a and b
being assumed):

d2v . (da . , \ dv , db dv . .

which is itself a special case of (1). If / = 0, then v = 0 on B — B_, , and hence through-
out D, by Picone's Theorem; this implies u = u(t), and use of (2) and (2b) then gives
u = 0. This proves statement (a); statement (b) follows as a corollary.

Theorem II. Consider a simply connected domain D in the :rf-plane, whose boundary
is (Fig. 1) a segment of the line x — x0, and a line defined by a continuous single-valued

3The extension to the case u ^ 0 at Pi is trivial.



1963] A MELTING PROBLEM 3

function x = F(t) satisfying Lipschitz conditions for tx < t < t2 and intersecting the
line x = x0 at two distinct points Pi : (x0, tx) and P2 : (xa, t2). Let u(P) be the solution
of Eq. (2) in D with

= fit) on x = F(t),

^ = 0 on x = x0 ,dx

- for tt < t < t2 , (4)

u = 0 at Pi •

Then (a) if /(<) < 0, u > 0 throughout D, and (b) if f(t) > 0, u < 0 throughout D.
Proof. Extend the solution by reflection about x = x0 , so that (Fig. 1):

X-F(t)

P, :(Xo,t,)

Fig. 1.

u(x, t) = u{2xa — x, t); F(t) < x < x0 (4a)

and so that u is now defined throughout the domain Dy bounded by x = F(t) and by
x = 2x0 — F(t). Because of Theorem I, only the case j(t) ^ 0 need be examined, and
no loss of generality is therefore involved in setting, for case (a),

j(t) = 0 U < I < f,
1(f) <0 t' < t < t' + 5, 5 > 0. (5)

Then u = 0 for ti < t < t', and a number 5', 0 < o' < S, clcarly exists such that

u(P) >0 on x = F(t), t' < t < V + 8'. (5a)

For, if this were not so, Picone's Theorem (applied to the domain D[ consisting of the
portion of Di within t — t! and t = t' + 5') would require u < 0 throughout Dl , with
the minimum of u occurring on x = F(t), and this contradicts the second of Eqs. (5).
This proves that u is initially (t = t' +) positive; but then it follows that u can never
be negative, because, if it were, a later time t" > t' + 8' would have to exist at which

u = 0, t = t",

u < 0, t" < t< t" + 8", 8" > 0,

~ < 0, t" < t< t" + 8"', 0 < 8"' < 8'

on x = F(f), (6)
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where Du/Dt stands for the total derivative of u(x, t) along x = F(t). Now, f(t) cannot
be negative in t" < t < t" + 5", since this would imply a minimum of u off the boundary;
on the other hand it cannot be zero within t" < t < t" + b'" because then the last of
Eqs. (6) would reduce to (du/dt) < 0 and hence Eq. (2) would require (d2u/dx2) < 0,
which again implies an interior minimum. Hence a non-vanishing interval exists within
which a negative u is not compatible with / < 0; therefore u > 0 and part (a) of the
theorem is proved. The proof of part (b) is entirely analogous.

3. Statement of the melting problem. Consider a slab, initially (i.e. at t = 0) at
zero temperature and occupying the region 0 < x < L, and insulated at x — L. An
arbitrarily prescribed heat input Q(t) is applied at x = 0, so that the temperature in the
slab rises and at x = 0 reaches the melting temperature Tm at the time t = tm . Melting
continues to take place thereafter, and it is assumed that a portion of thickness s(£)
has melted at any time t, while the prescribed heat input Q(t) is applied at x = s(t).
The mathematical formulation of the problem is as follows [7, p. 190ff]:

Mdx Vk &D = ̂  fr <x <L< o < t < tL ; (7)
T(x, 0) = 0; 0 < x < L; (8)

|~ (L, t) = 0; 0 < t < tL ; (9)

-k^(0,0 = Q(0; 0 (10a)

-km ^ t] = Q(t) - PJ | (Q- tm < t < tL ; (10b)

T[s(t), t\ = Tm; tm<t<tL] (11)

T(x, t) < Tm ; s(t) < x < L, 0 < t < tL ) (11a)

s(t) = 0; 0 < t < tm , (12)

where the times tm and tL are respectively defined by the equations

r(0, L) = Tm and s(tL) = L. (13)

The thermal diffusivity k = fc/(pc), the conductivity fc, the specific heat c, and the density
p are assumed to be functions of the temperature and therefore vary with both x and t.
The subscript m, affixed to any of these quantities, indicates that the value at the melting
temperature Tm must be used. The latent heat of melting is denoted by I.

It is easily shown4 that, in general,

f' Q(t) dt = [1 H(T) dx + [Pml + Hm]s(f), (14)
JO Ja(t)

where the heat content H(T) is defined as5
derivations for the case of constant properties are given in [2, 7, 8]; they are readily extended to

the present case if the heat content H(T) is introduced as defined by Eq. (14a), since then the right-hand
side of Eq. (7) reduces simply to (dH/dt).

6This definition differs from the usual one by the inclusion of the density under the integral sign;
cf. [9].
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H(T) = f p(T')c(T') dT'. (14a)
Jo

Note that pc > 0 and therefore H is a monotonically increasing function of T(x, t).
The symbol Hm denotes H(Tm).

Theorem III: Uniqueness of Solution. It will now be proved that there exists at
most one solution6 to Eqs. (7) to (13), corresponding to a prescribed function Q(t). To
prove this, assume that two distinct solutions exist, and denote them by the subscripts
1 and 2; then Theorem II insures uniqueness if st = s2 . Only the possibility s, ^ s2
need therefore be considered, or, without loss of generality, we may set

®1 = 0 ^ (15)

s2 > Si , t' < t < V + S, S > 0.

Write Eq. (14) for each solution, at some time t" in the interval where s2 > sx , and
subtract the results to get

0= fL (H2 - HO dx - r" } H, dx + (pj + Hm)[s2(t") - «,(*")]• (15a)

However, since T2 = Tm and Tx < Tm on x = s2(t), t' < t < t' + S, it follows from
Picone's Theorem [applied to the domain bounded by t = t', t = t' + 8, x = s2(t) and the
reflection x = 2L — s2(t) of the latter line about x = L; cf. Fig. 1] that within this range
of time T2 > Tl everywhere. Hence H2 > ; since furthermore

",a<' ' H, dx < Hm[s2(t") - ex(r')], (15b)L(<">
the right-hand side of Eq. (15a) cannot be zero. Hence conditions (15) cannot be met,
and uniqueness is assured.

4. Upper and lower bounds. Theorem IV. Consider two solutions of Eqs. (7) to
(13), respectively denoted by the subscripts 1 and 2, corresponding to two heat input
functions Qi(£) and Q2(t) such that

QS) > QiM- (16)
Then

s2(t) > Si(0; 0 < t < tL2 < tL1 , (17a)

T2{x, t) > T^x, 0; s2(0 < x < L. (17b)

Proof. Eq. (14), written for t = tL , gives

1" Q{t) dt = (PJ + Hm)L. (18)

Hence,

t2L ^ ti l (18a)

6That is, a twice continuously differentiable function T(x,t) and a Lipschitz continuous function s(t).
Except in the special case of Eqs. (22), this character of the solution is assumed throughout the remainder
of this paper.
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or, in other words,

h = Sl(t>L2) > Sl(/,c,2). (18b)

No information concerning the relative magnitude of s2 and Si at any other time can be
immediately obtained from Eq. (14). The proof then proceeds in two steps, as follows:
(a) it will first be shown that relation (17a) holds immediately, when sx and s2 first
differ, and then (b) that relation (17a) must then hold at all times. Inequality (17b)
then follows as a corollary.

The proof given below holds also when the latent heat I = 0; in this limiting case
however the proof of the present theorem follows readily from Theorem II.

The case of Q2 = Qi may here be omitted as trivial (Theorem III).
(a) Without loss of generality, assume that a time t' exists such that

Qi(t) = Q2(t) for 0 < t < t',

Qi{t) < Q2(t) for t' < t < t' + S, 8 > 0. (19)
It will now be shown that a number 8' > 0 exists such that

s2(t) > Si(t) for t' < t < t' + 8'. (19a)

Assume in fact that this is not so; then, in view of (18b), there must be at least one time
at which s2 = sx . Let the first of these times be t" (> t'), as shown in Fig. 2.7

Fig. 2. Fig. 3.

The quantity (T2 — rl\) is now zero along CBAA'B'C', and is negative along CDE and
C'D'Ehence, by Picone's Theorem, it is non-positive along EE', and so therefore is
the quantity [H(T2) — H(rI\)]. But Eq. (14), written for both solutions gives, after
subtraction,

0 < fa' (Q2 - Q1) dx = J" [H(T2) -H(T0] dx, (19b)

which is evidently a contradiction; hence (19a) is proved.
(b) If now there exists some later time at which sx exceeds s2 , again there must be

at least one instant at which s2 = Si ; let the first of these times be t'" (> t' + 8'), as
shown in Fig. 3. The quantity (T2 — Tt) is zero along CBAA'B'C', positive along CDE
and C'D'E', and zero at E and E'. By Picone's Theorem, it is thus non-negative along
EE'. Eq. (10b) however gives, at point E of Fig. 3,

'The extended domain, including the reflection about x — L, is considered throughout the proof.
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-K d{T*~ Tl) = (Q, ~ Q1) ~ pj(s; - sO, (20)

where dots indicate differentiation with respect to time. Clearly

sl(t'") < (21)
The right-hand side of (20) is positive if at least one of the inequalities (16) and (21)
hold; if this is the case Eq. (20) implies [d(T2—T1)/dx] <0 at E, which (with T2—T1 = 0
at E) would make (T2 — 7\) somewhere negative on EE' and thus leads to a contra-
diction.

In the special case

Qi ~~ Q2 j 1 s2 j Sj s2 at t — t (22a)

the above proof fails since then [d(T2 — l\)/dx] = 0 at E. We then assume

s{t) = {t ~2f")2 s\t") + {t ~3f/,)3 s-(t"0 +

Q(t) = (t - + {t ~2\")2 Q" Vn) +

where clearly

QW) > Q'i(t'")
sW) < siV"0

Differentiation of (10b) along s gives8

 7 (tfT . J?T\ _ (dk\ (§T ■ 1 HI) dT _ dQ c[s
m\dx2S dxdt) \dT/m\dxS dt) dx dt pm df

.t > t'", (22b)

(22c)

Jdp\ (dT . dT\ ds .
-\dfL(to° +Ti)di' (22d)

while Eq. (11), written in differential form, is

fs' + f = ° <22e>
or, with (7),

dT . . 1
!T~ s H dx pC ;§(g)"+*s]=o

Writing Eq. (22f) for solutions 1 and 2 and subtracting one obtains for this case
Id2(T2 — T^/dx2} = 0 at E. The same process applied to (22d) now gives9, at E,

— kmKm d ^.,.3 ' (Qi ~ Q'i) ~ pJ(s2 - sD (22g)

8In the equations which follow, all quantities must be evaluated at x = s(t).
'After use of Eq. (7) to give

JLL - A
dxdt dx

1A f \ _ dT Jd T dT
_Pc dx \ dx) J ~ K dx3 + '\dx2' dx)'
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Unless both equality signs hold in (22c), the right-hand side of (22g) is positive; but this
implies [d3(T2 — T^/dx3] < 0 at E, which again leads to a contradiction since it makes
(T2 — Tx) somewhere negative on EE'. The case

Qi — Q2 > Qi — Q2 ,
Si = S2 ) $1 == S2 j Si = §2

at t = t'" (23)

must still be investigated, as well as subsequent special cases of this type. These are
treated by means of further differentiation of Eqs. (22d), (22e) and (7), along s; but
inspection reveals that, in general, the result will be (at E):

d2n+1(T2 - Tx) jcr+1(s2-si)
— m dx2n+1 ~ di- pJ—Jr1— (24a)

dm(T2 - Tj)

when

dxm °' »» = 0, 1,2, ••• ,2n (24b)

dm(Qdr Q,) = 0; m-°, 1,2, 1, (24c)

dm(S2dr Sl) = 0; m = 0, 1,2, ... ,n. (24d)

■Choose n as the smallest integer for which at least one term of the right-hand side of
(24a) does not vanish, and then note that, just as with Eqs. (20) and (22g), this con-
tradicts the non-negative character of (T2 — Tj) required by Picone's Theorem along
EE'. The proof of the theorem is thus complete.

It may be noted that the converse of this theorem is false, that is, the validity of
Eqs. (17) does not imply the validity of (16).

5. Procedure for the construction of bounds. The theorem developed in the pre-
ceding section is particularly useful in the solution of melting problems of the type being
considered here, because, as may be readily observed, any solution of Eq. (7) valid
within the original slab thickness 0 < x < L is a solution of the melting problem for
a particular set of functions Q(t) and s(t). Indeed, such a solution of (7) satisfies all the
equations of the formulation of Section 3 with the exception of Eqs. (10b) and (11): the
latter may be used to determine s(l) and the former to calculate Q(t). This observation
forms in fact the basis for the integral-equations method devised in [1] for the solution
of this melting problem.

Solutions of the heat-conduction equation (7), thermal properties being uniform,
are easily constructed in terms of the fundamental solution:

2V*i ^ [• , (2nL + *\ , - , (2(n + !)£ ~Ux, I) - — r [lerfc [2V7i)+ .ertc [ ^ J

L / Kt 3x — 6Lx + 2L2 2 ^ exp [—Kn2ir2t/L2] nirxju 1 ku , ox — oijx t 4 exp \ —Knir 1 ij nirx\= * w + v ? S 7 cos_zr' (25)
which satisfies the conditions

AT1 AT1
-k ^ (0, 0 = 1, ^ (L, t) = 0, T0(x, 0) = 0. (25a)
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Duhamel's theorem may now be used to find the solution for any prescribed heat input
Q*(t) at x — 0. Since the actual heat input there is known up to the onset of melting,
it may be often convenient to choose Q*(t) = Q(t) for t < tm , and arbitrary thereafter.
Hence the temperature T*(x, t) due to Q* is [1, 7, 9]:

[ r* dT1
Q(h) (x, t - h) dh = T(x, t), t<tm,

T*(x,t) = }Jo dh (26)

[f Q(h) h) di> + {' Q*(0 dTo(X'd[~ U) *h. t > L.

The procedure then consists of calculating T* for suitable choices of Q*, and evaluating
Q(t) and s(t) for each after melting has begun; Theorem IV then insures that the melting
rate s so calculated is lower than the actual one in the range tm < t < t* if Q* < Q in that
range, and higher if Q* > Q in that range. An example of this procedure may be found
in the next section of this paper.

It may be remarked here that (as obviously follows from Theorem II applied to the
region 0 < x < L), if two fictitious heat inputs Qf (t) and Q%(t) are considered, such
that (on x = 0)

Qt{t) > QUt), (27)
then the thickness melted s(t) corresponding to Q% is larger than that corresponding to
Q* • This fact gives however no clue as to the relation between the corresponding heat
inputs Q2(fl and Qi{t) at x = s(t); to obtain this Theorem IV is required.

6. Numerical example. As a specific example, consider the half-space x > 0 which
melts under a constant uniform heat input Q0 ; this is the problem for which the exact
solution was calculated in [8] by means of a high-speed computer. Before melting the
solution is

rp / js 2(nt)  j £ —x  ,
Q0 1 o[X> l) k 2(ici)1/2 (28>

and

\S\ (28a>
Choose for the fictitious heat input Q* a piecewise constant function as follows:

Q*{t) = a&ott < t < ti+1, i = 0, 1, 2, • • • (29)

with
to = 0, — tm , h+i ^ ti ocq — 1. (29a)

Then Eq. (26) gives the temperature T* during the period tn < t < tn+1 as

T*(x, t) = Q0 X (a; — oii-JToix, t — ti); a-,, = 0. (30)
<■0

This temperature satisfies all Eqs. (7) to (12), with the exception of (10b) and (11).
With the notation [1]:

V = L ~ 1; ^ = Art\n' Vi = t, ~ L (31)

_ (kT-
"m
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Eqs. (11) and (10b) reduce respectively (for y„ < y < yn+i) to

1 = jb («i - «i-i)[ Tr(y - yi)]l/2 ierfc / v/2 (32a)
i=o \y Ui)

and (for I = 0) to

(32b)

respectively. The first of these is easily solved numerically for £(?/), for any choice of the
a.'s and the j/.-'s; with each value of £(j/), Q{y) is then readily obtained from (32b). The
choice of the «/s and of the y- s is made, as the calculations progress, so as to keep
Q{y)/Qo either larger or smaller than unity, depending on whether an upper or a lower
bound is desired. Numerical results for both bounds are shown in Fig. 4: the upper
bound is calculated with n = 3 and with

(33a)

Fig. 4.
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while for the lower bound n = 1 and

a0 = 1, 2/o = -1, (33b>
= 1-2, Hi = -3.

The above choices may be seen to give reasonable accuracy for y < 0.8; a different set of
choices to give greater accuracy could of course be devised without any difficulty.

The curves for Q(y) in Fig. 4 appear to have discontinuous derivatives at all values
of y( > 0; in reality all derivatives are continuous there, but the curves exhibit sharp
turns in transition zones too short to be evident in the graph with the scale used. It can
also be shown from Eq. (32a) that, for the upper bound calculated with n = 1 and yl = 0,

£(y) = ay1/2 for 0 < y « 1 (34)

where a is the root of the transcendental equation

«=(«! — 1) ierfc a (34a)

From Eq. (32b) it then follows that

= 1 + («i — 1) erfc a (34b)
Vo

The exact solution obtained in [8] for the position £(?/) of the moving boundary is
included in the lower graph of Fig. 4 for purposes of comparison.
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