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STEADY FLOW OF A SLIGHTLY VISCOELASTIC FLUID BETWEEN
ROTATING SPHERES*

BY

WILLIAM E. LANGLOIS
IBM Research Laboratory, San Jose, California

1. Introduction. The steady flow of an incompressible, slightly non-Newtonian
fluid of the type first studied by Rivlin and Ericksen [4] was considered in a previous
paper [1], It was assumed that the stress components tu (i, j = 1, 2, 3) in a Cartesian
coordinate system , at a point Xi of the fluid, are related to the kinematic state of
flow by the Cartesian tensor relation

tu = -pdu + nA^ + ePij(i, j = 1,2,3), (1.1)
where e is a small, dimensionless constant, p is an undetermined pressure, is constant,
and Pa is a symmetric tensor polynomial in R kinematic tensors A\(7 = 1, 2, • • • , R)
defined by**

= £+£(z"'i = 1,2,3)'

A (7 + 1)   dAg 1 a (7) | 1 (7) dVp
A" ~ v° dxp + Ai* dx, + A*' dx<

(i,j = 1, 2, 3;7 = 1,2, ••• ,R - 1). (1.2)
In equations (1.2), (i = 1, 2, 3) denote the velocity components in the xt coordi-

nate system.
The coefficients in the tensor polynomial Pa are scalar invariants of the kinematic

tensors, the coefficient of A™ vanishing when all the invariants vanish. The polynomial
Pa may be assumed to have no term of degree zero, for any such term could be incorpo-
rated into the undetermined pressure p.

One type of flow considered in the previous paper was that generated solely by rigid
walls in steady motion parallel to themselves, the fluid mass having no bounding surfaces
other than rigid walls and no body forces being applied to the fluid. It was shown that
flows of this type can be investigated quantitatively by the following procedure:

(i) A solution (v' , p') to the equations of motion for an incompressible Newtonian
fluid with viscosity m is calculated neglecting inertia subject to the boundary condition
that the fluid velocity at the walls match the velocity of the walls;

(ii) the solution (y' , p') calculated in (i) is introduced into the equations of motion
for the incompressible viscoelastic fluid described above, and the body forces required
to support this solution are calculated neglecting inertia;

(in) a solution (v'/ , p") to the equations of motion for an incompressible Newtonian
fluid under the action of the body forces calculated in (ii) is calculated neglecting inertia,
subject to the boundary condition of vanishing velocity on all the boundaries of the
fluid mass;

*Received July 20, 1962; revised manuscript received Aug. 24, 1962.
"""Throughout the paper, Latin indices except r are tensor indices, Greek indices except 0 and <j>

are running indices; r, 6, and <f> are reserved to denote the polar directions.
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(iv) then (vt — v\ — v'/ ,p = p' — p") is an approximate solution to the equations
of very slow motion for an incompressible, slightly viscoelastic fluid subject to the bound-
ary condition of zero relative velocity at the walls. The error involved is of the second
degree in e.

An example of this type of flow is the motion produced in a viscoelastic fluid con-
tained between two concentric spheres which rotate slowly about a common axis of
symmetry with different constant angular velocities.

If a Newtonian fluid is contained between the spheres and inertial effects are negligi-
ble, the streamlines of the flow are circles about the axis of rotation. Some aspects of
the Newtonian flow with nonnegligible inertia have been considered by Proudman [2]
and by Haberman [5].

It will be shown in the present paper that inclusion of viscoelastic terms in the
equations of motion influences the flow between spheres in two distinct ways: some of
these terms modify the distribution of the rotary flow about the axis, whereas others
of them contribute to a secondary flow in the meridional plane?.

2. The coordinate system. Let a spherical polar system (r. (* />) be defined such that
r is the distance from the common center of the spheres, ' >s otie colatitude measured
from the axis of rotation, and <j> is any longitude (see figuie 1). It will sometimes be
convenient to use the tensor notation

r = x1, 6 = x2, <t> = x3. (2.1)

The stress-deformation relation (1.1) becomes, in general tensor notation,

Fig. 1. The coordinate system.
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t) = -PS! + mA<1}< + eP'(i, j = 1,2, 3), (2.2)
where P• is the same tensor polynomial function of the mixed kinematic tensors
AjyU (y = 1,2, • • • , R) that Pa is of the A(iJ) (7 = 1, 2, • • • , R) in a Cartesian system.

The convariant kinematic tensors corresponding to the mixed tensors AjT)i are
determined by the expressions

AV = v,., + = 1,2,3), (2.3)
n.,P nP

= + + A<r, ̂  (. = 1, 2> 3. y = J, 2, ... , R _ i), (2.4)

where v{ and v' (i — 1, 2, 3) represent respectively the covariant and contravariant
components of velocity in the x' system and commas denote covariant differentiation.

If the physical components of velocity in the spherical coordinate system (r, 6, <t>)
are denoted by Vr , V e , V$ , then

Vi = v1 = Vr,

V2 = rV = rVe,

v3 = rVsin2 6 — rl^sin 6. (2.5)

With the radius and angular velocity of the inner sphere denoted by a 1 and 0, re-
spectively, and those of the outer sphere by a2 and Q2 respectively, the velocity com-
ponents must satisfy the boundary conditions

7r(a1; 6, <{>) = Vr(a2, = 0,

Ve(a,, 6,<t>) = Ve(a2, 6,<t>) = 0,

V^iax, 6, <j>) = aA sin 0,

y0(a2, 6, 4>) = a2Q2 sin 6. (2.6)

3. The Newtonian solution. If an incompressible Newtonian fluid of viscosity
H is contained betwen the spheres and if the motion is slow enough so that inertia can be
neglected, the equations of motion

2 t, 2 eve 2Ve cot e\ dp
\ V'-?V'~?~Ve 7—) = Yr'

S\/2Vd + % ̂  - -5-^-7) = ~%\ r 89 r sin 6J r dd

V2V, - 2 v% = 0, (3.1)
r sin 6

and the incompressibility condition

r ^ + 2Vr + ^ + cot 6 Ve = 0 (3.2)

must be satisfied at each point of the fluid mass. In equations (3.1),

Y7s = A2,25_,I^1, cot_0 ±
dr r dr r2 dd2 r2 dd' "'



64 WILLIAM E. LANGLOIS [Vol. XXI, No. 1

A solution (V'r , V'0 , V'^ , p') to equations (3.1) and (3.2), subject to the boundary
conditions (2.6), is provided by

Vr = 0, V', = 0, VI = sin 0(Ar + B/f), (3.4)
with

p' = constant. (3.5)

The constants A and B in equations (3.4) are defined by

A d'2^2 7-, 0]<X2(^1 Q2) /n
A — 3 3 ) & — 3 3* (v*W

a2 — ax a2 — ax K '

If the inner sphere is absent, the coefficient B vanishes, so that equations (3.4)
represent the rigid body motion obtained when a revolving sphere is completely filled
with fluid. In this case, equations (3.4) described the motion even if the inertia terms
are not neglected. (If inertia is not negligible the pressure is not constant, but is given
by p' = constant sin2 d.)

If the outer sphere is absent, the coefficient A vanishes. Equations (3.4) then repre-
sent the flow generated in an infinite volume of fluid by a steadily revolving sphere.
If the inertia terms are retained, equations (3.4) do not apply.

4. The body forces required to support the Newtonian solution in a viscoelastic
fluid. The contravariant metric tensor g'' for the spherical coordinate system (r, 0, 0) is
given by

1, 0, 0

0, l/r\ 0
0, 0, l/(r2sin2 6)

(4.1)

From equations (2.3), (2.4), (2.5), it is then seen that, for the flow described by
equations (3.4), the kinematic matrices Ay = || A,7'* ]| (7 = 1,2, • • • , R) are given by

Ax = — (3B/r4)X, A2 = (18JS2 sin2 e//)Y, Ay = 0(7 > 3), (4.2)
where

0, 0, r2 sin2 0

X = 0, 0, 0 . (4.3)

1, 0, 0
1, 0, 0

Y = 0, 0, 0 . (4.4)

0, 0, 0
It then follows from a result obtained by Rivlin [3] that the matrix P = || P) || is

expressible in the form

P = a,A| + ol2 A2 + o^A2 + a4 A2 + a5(A1A2 + A2At)

+ a6(A?A2 + A2A2) + a7(A,A2 + A2A0 + as(A.lA22 + A2A;), (4.5)

where as (5 = 1,2, • • • ,8) are polynomials in the invariants tr A! , tr A2 , tr A2 , tr A2 ,
tr Aj , tr A2, tr A2 A2, tr At A2, and tr A2 A2, al vanishing when all the invariants vanish.
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From equations (4.2),

A? =2 _ 9-62 sin2 6
r6

0, 0, 1

1, 0, 0
0, 0, 0

A,A2 + A2A, = — (54B3 sin2 6>/r10)X,

A2 = A2A2 + A2A2 = (324-B4 sin4 0/r12)Y,

A,A22 + A2Al = -(9725s sin4 0/rI6)X,

A2A2 + A2A2 = (5832B6 sin6 0/r 8)Y. (4.6)

The invariants become

trAi = trA\ = trAxA2 = trAXA^ = 0,

trA2 = ZrA2 = 18B2 sin2 0/r6,

/rA2 = 2trA\A2 = 324B4sin4 0/r12,

frA3 = 2lrA\A\ = 5832B6 sin6 0/r18. (4.7)

In view of equations (4.7), the coefficients as (8 = 1, 2, • • • ,8) are polynomials in
(B2 sin2 0/r6), the coefficient «i having no term in (B2 sin2 0/r6)0.

It then follows that equations for the physical stress components r,-,- (i, j = 1, 2, 3),
defined by

tau\u2 ■
T" = \ / ^ (not summed), (4.8)

are given by

T„ = -p' + 6 £ (4, + B,)(B sin 0/r3)2'
5 = 1

T22 = —P',

r33 = -p' + e sin 0/r3)2i,
8 = 1

T23 = 0,

r31 = —3Bn sin 0/r3 + e £ C5(B sin 0/r3)2{+1,
6 = 1

t» = 0. (4.9)
where , Bs , Cs (5 = 1, 2, • • • , N) are constants defined by the expansions

18a'2 B2 sin2 0/r6 + 324(«4 + a6)S4 sin4 0/r12

+ 5832agB6 sin6 0/r18 = £ AS(B sin 0/r3)25,
5=1

9a3B2 sin2 0/r6 = £ 58(i? sin 0/r3)2S,
8-1

- 3ai - 54a5£2sin2 0/r6 - 972«7£4 sin4 0/r12 = X) Cs(£sin 0/r3)28. (4.10)
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The number N of terms in each of these expansions and the magnitude of the co-
efficients As , Bs , Cs (5 = 1,2, • • • , N) depend on the form of the tensor polynomial
P) for the material under consideration.

The body forces (f'e , /' , /^) per unit mass of fluid required to support the flow de-
scribed by equations (3.4) with p = p' are determined by the equilibrium equations

~Pf' = + ~ + ~ (2r„ - t22 - r33 + cot 9t12),

~Pl'° = ^7 + "■ ^ t(T22 — T33) COt 9 + 3Tit],

-pU = ^ + r§df + r (3rsi + 2723 COt 6)■ (4"n)

Since p' is constant, substitution of equations (4.10) into equations (4.11) yields

-Pf'r = Z £ [B, ~ 2(35 - l)As](Bsm O/r3)2*,

-Pfi = £ B,(B sin 0/r3)2!,
i 5 = 1

N
€~Pf* = ~ £ 3(25 + 1)C,(B sin 0/r3)2!+1. (4.12)
f j-i

5. Calculation of the disturbance flow. The method described in the introduction
can now be used to calculate the perturbation of the flow field caused by the visco-
elasticity of the fluid. If a solution (V'/ , V" , V" , p") to the equations of motion for an
incompressible Newtonian fluid under the action of the body force field described by
equations (4.12) is calculated subject to the boundary conditions

V"(a,i, 6,<f) = V'/(at, 0,*) = 0, (5.1)

V'e'(alt 6, <t>) = V'»'{at, 6, <t>) = 0, (5.2)

0,4,) = FJ'fe, 0,4) = 0, (5.3)

then (Fr = V' — V" , F« = V'e — V" , F* = F^ — Vy , p = p' — p") is an approxi-
mate solution (with an error of the second degree in e) for the flow between the spheres
of a fluid having the stress-deformation relation (1.1).

The disturbance flow (V'/ , V" , F£' , p") should, therefore, be chosen to satisfy
the equations of motion

(v*V" ^V" Zdvy 2vi' cot e\ dp"
M(V Vr ~-2 V, - rt de - r, )~ dr ~ p/r, (5.4)

/ »Tr„ , 2 dV'/ V6" \ 1 dp"
4 r2 dd r sin2J r 86 (5.5)

m(V2F" - 2 V'\.) = -pfi, (5.6)r sin 6/ v s '
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and the incompressibility condition

r ^ + 2V'/ + + cot eVV = 0, (5.7)

subject to the boundary conditions (5.1) to (5.3).
If a stream function SF (r, 6) is introduced such that

V - 1 d*
r2smddd'

1V"   (5.8)r sin 6 dr

the incompressibility condition (5.7) is automatically satisfied. Also, p" can be eliminated
from equations (5.4) and (5.5) by cross-differentiation, giving the differential equation for
the stream function

(5.9)

where

4 (d2 cot e a l a2V
£ ~ U2~ r2 de + ?de2J- (5-10)

Since by equations (5.1) and (5.2) both V'/ and V'g' vanish at r = a, and at r = a2 ,
since there can be no flow across the axis of symmetry, and since an additive constant
does not affect the physical significance of a stream function, the boundary conditions
to be imposed upon Sl> may be taken as

*(„„«. *(«„,). . n&jz . o. (M1)

By a substitution of the expressions (4.12) for the components of body force into
equations (5.6) and (5.9), the problem of calculating the disturbance flow is reduced
to the problem of integrating the partial differential equations

(v2 - =frt'l 3(26 + 1)0s{B Sin 6/rT+1' (5'12)

E% = _tml 4g[(35 _ 1)As + Bs]{B sin 6/>ry»i (513)
nr {_i

subject to the boundary conditions (5.3) and (5.11), respectively.
The velocity component can be determined with the aid of the identity

1 ~I rx 2S+1 • 25+i .2d 2(5 + 1)(25 + 1)V 2 ■ 2 n Uif) sin 6 = sin 6 3-5 + - 3 — ^  r sin 0J L dr r dr r 1(f)
• 25-1 /j

+ 45(5+l)Sm2 1(f), (5.14)

which is valid for any twice differentiable function 1(f).
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With this identity, it is apparent that
N

€
V" = ~ Z /ito sin28+1 6 (5.15)

M S-0

is a solution to equation (5.12) subject to the boundary conditions (5.3), provided the
functions /s(r) (5 = 0,1, • • • , N) are chosen to satisfy the system of ordinary differ-
ential equations

[d2 , 2 d 2(N + l)(2N + 1)1 , N S(2N + 1 )CNB2N+1
Ldr2 + r dr r2 J/jvW

2dL_ 2(5 + 1)(25 + 1)1 fmS + 4(5 + 1)(5 + 2)

3(25 + l)CsB2S+1

, z, u. -T j,)\AU ~T i) / A , IV" * J-A" ^ *) 1 f.\
rdr ~7 \m + 7 /s+l(r)

J.6J+4
(5 = 1,2, ••• ,N- 1;N > 2),

[J + H ("6)
subject to the boundary conditions

/a(«i) = /s(a2) = 0(5 = 0, 1, ••• , iV). (5.17)

For JV = 1, only the first and last of equations (5.16) are used.
For a specified value of N, equations (5.16) can be integrated in succession, beginning

with the equation involving only fN(r). Each stage of the process involves the integration
of a second order ordinary differential equation of the Euler type. Since only one of the
unknown functions fs(r) (5 = 0, 1, • • • , N) is determined at each step, this is not a
difficult task.

In a similar manner, the identity

El[f(r) sin25 d cos 6] = sin25 6 cos 9 f(r)

+ w - 1, „. 0$, -1 i - ™] 1(f)

+ 165(5 - 1)2(5 - 2) sm" C0S 6 1(f), (5.18)

which is valid for any function /(r) with four derivatives, facilitates the determination
of the stream function Mr.

A solution to equation (5.13) subject to the boundary conditions (5.11) is

^ _ _e cos 0 ^2 gin25 (5.19)

where the functions gs(r) (8 = 1, 2, • • • , N) are chosen to satisfy the ordinary differential
equations
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2N(2N + 1)
r2

gN(f) = 4iV[(3iV - l)+v + BN]B2N/r«N,

L dr2
2(jy - i)(2jy - i)

r2
9N-i(r)

+ 8N(N - 1) i <L _ 2 A _ 2(AT - l)(2iV + 1)
r2 dr2 r3 dr rl Qn(t)

= m - 1)[(32V - 4)iljr_1 +

f"d2 23(25+1)?Ls?—?—J »•«
« I~1 d2 2d 28(25 + 3)1

+ 85(5 + i) r* >\ gM(r)

+ 165(3 + y(8 + 2) gM(r) = 45[(35 - 1 )A, + Bs]B2S/ra5

(5 = 1,2, ••• ,N - 2)N > 3), (5.20)
subject to the boundary conditions

gM = gs(a2) = = 0(5 = 1, 2, • • • , N). (5.21)

For N = 1, only the first of equations (5.20) are used; for N = 2, the first two equa-
tions are used.

For a specified value of N, integration of equations (5.20) in succession, beginning
with the equation involving only /A-(r), yields at each stage an ordinary, fourth order
Euler differential equation in one of the unknown functions gs(r) (5 = 1, 2, • • • , N).

6. Illustration of a special case. It is seen from equations (5.12) that if one or more
■of the Cs (5 = 1, 2, • • • , N) be different from zero, the distribution of the aximuthal
velocity component F* — — F" is different from that which is found in a Newtonian
fluid.

A perhaps more striking effect is observed if one or more of the coefficients
[(35 — l)Aj + Bs\ (5 = 1, 2, • • • , N) appearing in equations (5.13) differ from zero.
In this case, a secondary circulation in the meridional planes is found. This circulation,
which is transverse to the main (rotary) flow, occurs in a Newtonian fluid only as an
effect of inertia. In a viscoelastic material, however, it can occur under conditions wherein
the inertial terms are definitely negligible. In particular, it is found if the stress-deforma-
tion relation for the fluid is given by

tj = -pS} + fiA<lu + e(X^1,<^1)* + vA?u), (6.1)

where X and v are constants (\ 9^ — 4?).
For this case,

N = 1, A1 = 18?, Bj = 9X, Ci = 0. (6.2)

Since N = 1 and Ci = 0, equation (5.12) and the boundary conditions (5.3) imply
that = 0, so that F^ = F£ as given by the third of equations (3.4).
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Fig. 2. The secondary flow.

Equation (5.19) for the stream function W becomes

SE' = —^ gi(r) cos 9 sin2 6, (6.3)

where g, (r) satisfies the ordinary differential equation

gi(r) = 36(4? + \)B2/r7, (6.4)
U _ 6"
Idr2 r2 _

subject to the boundary conditions

(„ \ _ r„ \ — dgijcii) _ dgi(a2) _ „
ffi(.au — ^r — — 0. (6.5)

The general solution to equation (6.4) is

B2 ,M , (I , a , 7 , 3gl{r) = ^ (4, + x) \p + p + b + cr3 + dr J, (6.6)

where a, b, c, d are constants. The boundary conditions (6.5) are satisfied by choosing
these constants so that they satisfy the four linear equations

b a/a\ "I ■ col -f- da': = —1 /a>i,

b + a/a\ + cal + dal = — 1 /a\,

— 2 a/a\ + 3 cal + 5dat = 3/at,

- 2a/al + 3cal + 5dat = 3/a\. (6.7)
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The secondary flow having the stream function ^ given by equation (6.3), with
g^r) given by equation (6.6), is illustrated in Figure 2 for a2 = 2a, with (4i> + X) positive.
The direction of flow is reversed for (4j> + X) negative.
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