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ON THE NONLINEAR THEORY OF ELASTIC SHELLS UNDER THE
KIRCHHOFF HYPOTHESIS*

BY

P. M. NAGHDI and R. P. NORDGREN
University of California, Berkeley

1. Introduction. Despite several significant contributions, the complete nonlinear
bending theory of elastic shells which would include fully general and nonlinear consti-
tutive equations and strain measures is not as yet available. The earliest general investi-
gations are by Synge and Chien [1] and Chien [2] who evidently were the first to adopt
the intrinsic approach, thus avoiding direct reference to displacements. These papers of
Synge and Chien, which are remarkable for their generality, utilize linear constitutive
relations.1 More recently, an exact theory of strain for shells and rods, based on the
concept of oriented bodies of E. and F. Cosserat, was formulated by Ericksen and
Truesdell [4] who, however, did not consider the problem of constitutive equations.2
Other developments which also employ linear constitutive relations are founded under
the Kirchhoff hypothesis and often contain other approximations. Among these we
mention the incomplete treatment of Novozhilov [5; pp. 186-198], E. Reissner's [6, 7]
formulation of axisymmetric deformation of shells of revolution, and the more general
works of Sanders [8] and Leonard [9]. Both Sanders [8] and Leonard [9] independently
have, through an heuristic argument, proposed the differences of the first fundamental
forms and of the second fundamental forms between the deformed and the undeformed
middle surface of the shell as measures of deformation in "extension" and "bending,"
respectively; also, after postulating the existence of a two-dimensional strain energy
function for shells dependent only on these two measures of deformation,3 they have
derived constitutive equations by means of the generalized Hooke's law for the case of
finite displacement and infinitesimal strains.

Beginning with the three-dimensional field equations, the present paper is concerned
with an exact, complete, and fully general nonlinear theory of elastic shells founded
under the Kirchhoff hypothesis.4 Since the fully general equations of equilibrium in
terms of stress and couple resultants and the appropriate boundary conditions are well
known,5 the main task confronting us is the determination of suitable strain measures
and the derivation of constitutive equations.

*Received August 16, 1962. The results presented here were obtained in the course of research
sponsored by the Office of Naval Research under Contract Nonr 222(69), Project NR-064-436, with
the University of California, Berkeley.

xThe work of Chien has been criticized by a number of investigators and has been re-examined by
Reiss who discovered several errors in Chien's work. For a brief account of these and related references,
see [3].

^The paper of Ericksen and Truesdell [4] also contains an elegant derivation of the general equations
of equilibrium for shells via the direct method which is shorter than that given earlier by Synge and
Chien [1].

3The connection between the strain energy for shells (per unit area of the middle surface) and the
corresponding strain energy function in 3-space is not considered in [8] and [9],

4This hypothesis entails the vanishing of transverse shear strains and the transverse normal strain,
5A satisfactory derivation of the general equations of equilibrium for shells from the stress differential

equations of equilibrium in 3-space is given in [10; Sec. 5].
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First, with the aid of certain results established recently in [10], a representation of
finite strain measures for shells (and plates) is obtained in Sec. 2. This representation
of the strain measures, which is exact under the Kirchhoff hypothesis, has a remarkably
simple structure and is derived with the aid of Cauchy-Green measures of deformation in
3-space. Next, with the use of the principle of virtual work and in light of the representa-
tion of the strain measures established in Sec. 2, the structure of the fully nonlinear
constitutive equations (in the sense of Green) is derived in Sec. 3. These constitutive
equations may also be derived by direct integration (with respect to the coordinate along
the normal to the deformed middle surface of the shell) of the constitutive relations of the
nonlinear theory of hyperelastic materials in 3-space. As this alternate method of deriva-
tion is also instructive, it is briefly carried out in Sec. 4, where the reduction to the
corresponding results of the linear theory is included. Finally, the nature of kinematic
approximations, often adopted in contemporary literature, is discussed in Sec. 5 with
special reference to axisymmetric deformation of shells of revolution. The conclusions
arrived at are in accord with intuitive expectations and give further support to such
approximate theories as that in [6, 7], where the displacements are finite but the strains
are assumed to be infinitesimal.

The notation employed throughout the paper is essentially that of Ref. [10]. In
particular, in order to distinguish between material and spatial descriptions, capital
letters and indices (Latin or Greek) are used for the former and lower case letters and
indices for the latter. Latin indices will have the range 1, 2, 3, whereas Greek indices
with the range 1, 2 will be reserved for subtensors and surface tensors. Also, all letters
with a superposed asterisk refer to 3-space.

2. Preliminaries. A representation of finite strain measures for shells. Let XA
and x' denote the material and spatial curvilinear coordinates referred to a fixed right-
handed orthogonal Cartesian system in a Euclidean 3-space and let the motion of the
shell be represented by transformation relations of the form

x' = x'(XA, t); \x\A\ > 0, (2.1)

where comma denotes partial differentiation, XA are the initial coordinates of a generic
point of the shell space8 and x' the coordinates of the same point at time t. Further, let
XA and x' be identified with a set of normal coordinates so that the position vectors of a
generic point of the shell space in material and spatial frames may be represented as

R* = R(Xa) + X3A3(Xa); R*a-A3 = 0, A3-A3 = 1, (2.2)

r* = r(xa) + x3a3(xa); i*a-a3 = 0, a3-a3 = 1,

where R and r are the position vectors of a generic point of the material and spatial
middle surfaces having A3 and a3 as unit normal vectors, respectively.

Now, let us admit the restricted transformation relations

XA = X\x"), X3 = x3; |Xfa| > 0 (2.3)
and its inverse. The mapping (2.3) characterizing the deformation of the shell space is
equivalent to the Kirchhoff hypothesis according to which normal lines XA = const.

6A precise definition of a shell is given in [10; Sec. 4], The shell space refers to the region occupied
by the shell which, e.g., with reference to spatial frame, is defined by its middle surface s with boundary
c and | x3 | < hn < rm-m ̂  0, where h is the thickness of the shell and rm-m stands for the minimum
(local) radius of curvature.
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remain normal to the deformed middle surface and surfaces originally parallel to the
undeformed middle surface remain parallel to the deformed middle surface and at the
same distance from it. As brought out in [10; Sec. 4], under the Kirchhoff hypothesis, the
representation of the displacement vector in the form

u = r* — R* = w(xa) + x3§(xa) (2.4)

is exact and furthermore leads to the following strain measures

2eaP = + X3K\p) + M/s(<Ka + ®*Xa) — + £3/<x.„)($„0 + X^K^ff) (2.5)

— (<t>3a + x3Ka)(<j>l + x3kI), ea3 = e33 = 0,

where

v = »"(«>„ + w(xy)a3 = r(x") - R[X\x°)],

3 = /3"(x7)aa + /3V)a3 = a3(x") - A3[XV)1, (2.6)

tf.a = »||« - biw, fj)3a = W,a + bay,

"'.a = ~ biff, K*a = 0% + bayfi\ (2.7)
a„ = r,„ is the surface base vector, a0„ and bafl denote, respectively, the first and the
second fundamental forms of the surface, ( ),, a denotes covariant differentiation with
respect to aa/3 and

rf = (5; - x3baf,), (2.8)
5 p being the Kronecker symbol.

We now proceed to obtain an alternate representation of strain measures for shells.
Denoting the metric tensors in the material and spatial normal coordinate systems by
Gab and g{i , respectively, and recalling that under the Kirchhoff hypothesis and in
normal coordinates, the Cauchy-Green measures of deformation yield [10; Sec. 4]

2C«0 Q afl XtUXtpGA r, 0a3 = ^33 = 0, (2.9)

then with the aid of (2.3) and the fact that

Q afi MaM/3®r\) (2.10)

the first of (2.9) may be put in the form

2&ap 2 "1" 2x iGap ~f~ 2(x ) 2&aP) (2.11)
where

2 oe«j3 = aap — XXX^Aat, (2.12a)

ie„f» = ~[baf ~ X%X^BAT], (2.12b)

2 2eap = b\abp X^aXTpBeABr (2.12c)

and AAr and BAT are the dual of aa|9 and bafl in the material frame. In addition, com-
parison of (2.5) and (2.11) furnishes the relations

2 0eae — {<!>*? + <f>tj«) — — <t>3a<t>l,

2 1^0,3 — (ko0 + K(la) ba<fi\p bff<t>\a — Kff(f)^a — kI<P(1 — Kp<t>l, (2.13)

2 *eap = —fraKX)3 — b^K\a — /ct/cx0 —
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For future reference, we also recall the material description of strain in the form

2Eat = 2x iAx^reap — X iAX^g ap GArr Ey3 = E33 = 0

from which, together with (2.3), follows the dual of (2.11) and (2.12), namely

2-Bat = 2qEa r H" 2a;3 l-E^r 2(x3) 2EAx, (2-14)

2 o^Ar = 2x"Ax^r o^a/s = x"Ax^Taap — A^v, (2.15a)

\EAT = l6a/S = —f'.A^r"I" -BaT) (2.15a)

2 2-^Ar = 2x"Aa:%2eas = x"Ax0,Tba\bp — BaqB®. (2.15c)

As the structure of the right-hand sides of (2.12) and (2.15) are reminiscent of the
first, second, and third fundamental forms of a surface, it is desirable to obtain a further
connection between 2e0/3 , ieafl , and 0e«p • To this end, we designate the mean and the
Gaussian curvatures of the material and spatial middle surface by

0 = K = \Bl\ , (2.16a)
and

u = ! byy, k=\byy\, (2.16 b)
respectively, and recall the Hamilton-Cayley theorem for a 2 X 2 matrix which, when
applied to bal3 , reads

k&afi — 2o:ba@ ba\bp. (2.17)

Substituting (2.12b) into (2.12c), making use of (2.12a), (2.17), and its dual, then after
some rearrangement we deduce

2e«fi = — {SVa/s + K 0eap — (&> — 2)ba? + \{k - K)aap} (2.18)7

with the aid of which (2.11) may be written as

eafi = [1 — (x3fK]0eaf> + z3[l — x3ti\ieafi + (x3)2rafl, (2.19a)

where
r*e = [(« - tybali - h(k - K)aal,\. (2.196)

It is clear from (2.18) that 2eap cannot be expressed entirely in terms of 0ea/3 and xeap
alone. Hence, according to (2.11), [or equivalently (2.19)], which is exact under the
Kirchhoff hypothesis, the strain measures for the shell space, to within rigid motion, are
uniquely determined by neafs , (n = 0, 1, 2). Although the exact representation (2.11),
which includes 2eap does not appear to have been noted previously, it may be mentioned
that the selection of 0eafi and xeaf, , as two independent submeasures of deformation,
argued on an intuitive basis, has been proposed independently by both Sanders [8] and
Leonard [9]. In this connection and with reference to (2.19), it is interesting to ask under
what circumstances the strain measures are determined by 0eap and ieafi alone.

It follows from (2.19b) that raf) vanishes if and only if

  <2'20>
'Other representations of 2eap which, e.g., in addition to oeap and ieap, will contain X £ as well as

AAr and BAT are possible, but they are not as revealing as that given by (2.18).
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Setting §[fc — K/w — ft] = r~l, then it may be easily shown by Mainardi-Codazzi re-
lations, namely &a/siiT = bayl , that r is constant and hence (2.20) has the form
bafs — . But this in turn demands that the spatial middle surface be spherical with
r as the radius of curvature, i.e., = r-1, k = r~2, with the aid of which (2.20) also
provides the additional restriction

r'1 = ft ± [ft2 - K}u\ (2.21)

Clearly, (2.21) is fulfilled if the undeformed middle surface is spherical, i.e.,
Bat = i2_1Air , ft2 = K = R~2. However, the initial configuration need not be restricted
■only to a spherical shell and for ft2 K, it follows from (r'1) ,a = 0 that

\K ± ^ ft = const., (sayC). (2.22)

To obtain more specific information, let (2.22) be referred to principal directions and let
B\ = aB\ so that

(.B\)2 ± - (1 + a)B\ - - = 0, (2.23)ar a

the solution of which represents a family of surfaces including the hyperbolic paraboloid.
Thus, under the Kirchhoff hypothesis, the strain measures are given by (2.19a) with

t ap = 0 provided the deformed middle surface is spherical and its radus of curvature
meets (2.21) for all admissible ft and K. In particular, with raf, = 0, for an initially flat
plate (ft = K = 0), the deformation is simply plane and, if the undeformed middle
surface is spherical, by (2.21) r = R, and no deformation is possible.

3. Derivation of the constitutive equations. Utilizing the exact strain measures
(2.11), we now proceed to derive general constitutive equations for elastic shells by
means of a virtual work principle in 3-space. To avoid unnecessary duplications in the
derivation that follows, the boundary conditions are not included.

We recall (see, e.g., Green and Zerna [11]) that during a virtual displacement, the
■expression for virtual work of the body and surface forces acting on the shell space in
•equilibrium at time t may be written as

5C/ = ^ a'Se^dv = S2*dv, (3.1)8
P 0

where p* is the mass density at time t, p% is the initial mass density, yi*(e,-,-)
is the elastic potential (or the strain energy density) of the shell space, tr*' are the spatial
•components of the stress tensor which satisfies the symmetry condition eUk<r'k = 0,

is the e-system in 3-space, and the element of volume dv at time t is given by

dv = (g/a)1/2dsdx3, (3.2)

■ds being an element of area of the spatial middle surface.
Now by (2.9), (2.10), and the use of (2.8), we have

25ea(3 = 8gafl = 5[MarfaxJ = — x3[ixaXSb} + (3.3)

8Although the virtual work expression in [11] is derived in a conveeted coordinate system, it is
■equally valid in an arbitrary spatial frame of reference which is regarded as convected only during a
virtual displacement, so that when SX 4 =0.
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which, together with (3.2), when substituted into the first of (3.1), after using the defini-
tions of stress and couple resultants in the form

W=/I w°>"vv! {*■}<<*'• <3-4)
yields

SU = i J {[iVXf - blMav]8aXv - 2M\Sbx,\ ds, (3.5)

where again (2.8) has been used.
In view of the second of (2.3) and since under the Kirchhoff hypothesis h = const.,

if we define

/h/2 -A/2
(:g/a)W2p* dx3, Po = (G/A)U2p$ dx3, (3.6)

■h/2 J-h/2

as the mass density at time t and the initial mass density, both per unit area of the
middle surface, it then follows from the law of conservation of mass in the form

Po

that

5 - (f w <3-7'

_P_
Po

= {-J' K.I • (3.8)
Recalling the expression for the total strain energy of the shell space, namely

U = [ ^ 2*(e..,) dv = [ 2*{Eab) dV, (3.9)
Jv Po Jv

then with the aid of (3.2) and (3.7)
/» i%n/z

U= (g/aY^G/gy2 \x*,A\ 2* dx3 ds
J S J-h/2

and by (3.8)

where

U = f 2 ds = [ 2 dS, (3.10)
J 8 Po Js

/h/2 (iG/A)U2Z*(Eat) dx3 (3.11)
-h/2

is the strain energy density per unit area of the middle surface.
Next, utilizing (3.10), we write

SU = f A 82 ds = [ T. 92 80eae + 32 8^ + , dS S2eaA ds. (3.12)
J 8 Po J8 Po Ld 0&ctfi V 1 &afi U 2&afi J

But from (2.12) we have
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25 o6ap = d&afi y (3.13a)

25 !ea(i = —28bap = — 8(aa>,b) + %x&a)

= — [b^Scicx + b],8ap\ + a„\8b} + a^Sbl], (3.136)
28 2eap = 8(ba\b£) = Sta^babp) = bvab^8a^ + ba\Sb) + bp\8bxa , (3.13c)

"the substitution of which into (3.12) results in

fe]'+ [~+ TT~ a°* + T^~ (3-14)d 2e«/)J L d

as , , as , , as ~LlX\ ,
~ a"x T~r~ +  ^ Opx T— 5o^ as.a ^ a 2ea(9 a 2e^pJ J

In order to obtain the desired results, it will suffice to compare (3.5) and (3.14).9
Hence,

_ h\Mai = I"- b\ t~~ - 61 + 6'a6^ -^-1
Po L<? O^Xt; ^ I^tj/3 l^aX ^ 2&afiA

^ = - TFT- a.x - T~ 6-xl, (3.15)po La ica/j a J

where it should be noted that the right-hand side of the first of (3.15) is symmetric and
satisfies the equation of moment equilibrium about the normal to the deformed middle
surface. From the combination of (3.15) and after simplification, there follows the
constitutive relations

=j> r - 6x -^-i
po La 0^x " a xeafi\'

= jl _ 6x
Po Lo

(3.16)
as ,x as

.a le^x a a 2ea/3j

which may alternatively be expressed in terms of S (EAV). For this purpose, observing
that by (2.15)

as „ , as

we have

- x"Ax"_T J—', (n = 0, 1,2),
a „ea(S a neir

** = ■£. - bl
Po Lo D-^ar o !-c<ArJ ^

i.^3x _ _p_ f~ as x ix as ~| a $
M ~ ^7? a a A W \X.AX.T-Po L" i-"ir o

9If prior to the comparison of (3.5) and (3.14) we first symmetrize Sbp and write &bap, then the
procedure would be similar to that used by Sanders [8] who also employs different definitions for stress
and couple resultants.
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We also note here that in a convected coordinate system (x\ = 51), the above consti-
tutive equations may be written as

=  bx -^-1
PoUo^x ae1Ea J'

PoU^x "d2Ea J'

(3.18)

The constitutive equatious (3.17), derived under the Kirchhoff hypothesis, charac-
terize the mechanical behaviour of elastic shells by a single scalar 2 defined through
(3.11).10 More explicit forms of the constitutive relations (3.17) may be deduced by
restricting the functional form of 2. We do not pursue this aspect of the subject here,
but merely note that for isotropic materials, on the basis of the works of Rivlin and
Ericksen [12] and Rivlin [13], 2 may be expressed in terms of scalar invariants of four
2X2 matrices consisting of Bl and the three submeasures of strain.

4. Alternate derivation of the constitutive equations. Reduction to the linear theory.
In this section, we derive the constitutive equations for shells by direct integration with
respect to x3 of those of the nonlinear theory of hyperelastic materials in 3-space, i.e.,

.-. = p!^= pimLx<xi f4n
PC? deu p0* dEAB X-aX-b' (4-1}

and then briefly discuss the reduction of the resulting expressions to those of the linear
theory.

In view of the structure of (2.11), first observe that

(» = 0,1,2). (4.2)
Qrfiafl u€ap

Next, by (3.4), (4.1), (3.7), and (2.8), the stress resultants may be expressed as

32^
&ap

which, after using (4.2) and (3.8) and invoking (3.11), yields the first of (3.16). The
second of (3.16) may be obtained in a similar manner from the second of (3.4).

In the remainder of this section, we consider the reduction of the constitutive rela-
tions derived in Sec. 3 to the corresponding results in the linear theory of elastic shells.
First, we note that for the linear theory, (3.11) may be replaced by

N" = [ (<g/a)u\G/g)u2 \x%\ ^ (5? - x"K) dx3
J-h/2 oeap

/n/.s
(gr/a)1/22* dx3 (4.3)

■h/2

so that in view of (2.11),

= r (9/a)u2 ~ (x3y dx3; (n = 0,1,2). (4.4)
Un^al3 J-h/2 Oeap

Further, linearization of (2.5) yields

2ea(J = + X3Kyfi) + Hyp((l>ya + X3Kya) (4.5)

10At least in principle, for a given X*(EAr) in 3-space, (3.11) determines the corresponding 2.
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with the aid of which
as* 1 <52* 0 - adZ*
~KT~ = I vr~ [mxM, + M A5xJ = Mx T— (4.6a)
o<Pap oexi) oexs

and similarly,
5S* 3 «aS* M AM
7 ~ = Z Mx -T—. (4.66)
OKap de\p

Introducing (4.4) into (3.16), recalling that for the linear theory p/p0 ~ 1, making
use of (4.6) and invoking (4.3), there results

N<* = = f2- (4.7)0<Px5 OKX|S

which are the same as those appropriate for the linear theory under the Kirchhoff hy-
pothesis [10; Sec. 6]. The more explicit form of the linear constitutive equations for
shells may be deduced by further assuming a quadratic form for X)*(e<*/s) in (4-3).

5. Approximations: Axisymmetric deformation of shells of revolution. As may be
seen from the results of Sees. 2 and 3, the exact and general equations characterizing the
deformation of an elastic shell, even under the Kirchhoff hypothesis, are still fairly
complex and discouraging from the point of view of application. For this reason and in
order to render the nonlinear equations of shell theory more manageable, previous
investigators (e.g., [6, 7, 8, 9]), in addition to the use of generalized Hooke's law, have
introduced other plausible assumptions and useful approximations, especially in the
kinematic description of the problem. Although these further assumptions are often
justified from physical considerations, nevertheless it is desirable to isolate their effect
and consequent approximations and, if possible, to indicate precisely the position of the
approximate theory relative to the exact. With this in mind and motivated by Reissner's
contributions, in the remainder of this paper we confine attention to axisymmetric de-
formation of shells of revolution and attempt to trace and identify the nature of the
approximations in [6].

For ready comparison, we adopt here the notation employed by Reissner [6, 7] and,
for the square of linear elements under the Kirchhoff hypothesis and in revolution
coordinates, we write

dR*-dR* = [a0(l - Xs diX1)2 + L(l - x3S-^^

di*-dr* = £a(l - X3^j diX1)2 + |V(l - X

d{X2f + d{xy,
(5.1)

d{xy + d(xy,r

where prime designates differentiation with respect to X1 (denoted by £ in [6]) and the
quantities to which a subscript 0 is attached refer to the undeformed middle surface.
By (2.14) and from the difference of the two expressions in (5.1), we have

2[0En + X\Eat + (X3)2 2EAT]dXAdXr

= [(a2 - a2) - 2X\a<t>' - a0<t>'0) + (X3)\<t>'2 - <t>'02)]d(.Xy (5.2)

+ [(/ — rl) — 2X3(r sin <f> — r0 sin <f>0)

+ (X3)2(sin2 0 - sin2 <t>0)]d(Xy
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which supplies the following submeasures of strain:

0E,v — 5
V - a I) 0

0 (r2 - rl).
\E HT — —

(<a<t>' — a0<j>'o) 0

0 (r sin <j> — ra sin 0O)-

~ O 0
0 (sin2 4> — sin2 <£0)-

(5.3)

It is expedient for future reference to carry out the subsequent discussion in terms
of the physical components of strain. To this end, recalling that the quantities which
appear in the constitutive equations (3.17) are surface tensors, we calculate the physical
components of (5.3) with respect to the metric of the undeformed middle surface Aav
(rather than (?A r) and obtain

off (11) = i 2~ ) o-®(22> = 2 2 > oEc>) = nE{ 21) = 0, (5.4a)
«o TO

ti   77T   7* sin <f> 7*q sin <J>p
1-^(11) — — 2 > 1-C<(22) — 2 , 1-^(12) — 1^(21) — U, \p.tO)

a0 r0

„ _ i $ $0 jp _ i sin 0 sin <f>0 „ — jp — 0 fi 4r)
2-^(11) — 2 2 , 2" (22) — 2 2 , 2-^ (12) 2" (21) — <J. (,0.10;

«0 ^0

Consider now the first of (5.4a) and the first of (5.4b), which may be written as

_ a - a„|
O-C'dl) — ri+>^<»>= --M*+-—-) - 4 <5-5)

«o L 2 a0 J a0L \ O!o / J

Clearly, if [(a — a0)/a0] « 1, then by (5.5)

oBd.) = iEm) = ~ 0°, (5.6)(Xq (Xq

both subject to the same restriction which may be stated as 0#un « 1. Similarly, if
[(r — r0)/r0] <K 1, by the remaining nonvanishing strains in (5.4a, b)

tp - r ~ r» tp _ sin <t> - sin <ft„
0*^ (22) — , 1-^(22) — — )

'0 ' 0

and again both subject to the same identical restriction 0Em) « 1.
The submeasures of strain in the forms (5.6) and (5.7) are identical to those derived

in a different manner by lleissner [6] who, with the limitation to axisymmetric deforma-
tion of shells of revolution,11 employs Biot's (three-dimensional) strain measure. As
pointed out by Truesdell and Toupin [14; Sees. 33 and 33A], Biot's strain measure is
not convenient for coordinates other than those along the principal axes of strain, al-
though it is identical to EAB when both are infinitesimal.

The restrictions associated with the derivation of (5.6) and (5.7) lend further support
to Reissner's analysis of axisymmetric deformation of shells of revolution with small

"As quantities corresponding to iEAV do not arise in [6], it may be of interest to note that in the
context of the present paper, Reissner's measures may be regarded as equivalent to calculating the
physical components of EAT with respect to (?Ar and then approximating (SA — X3BA) by 5A in the
denominator of the resulting expressions.
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middle surface strains (oE(AT) « 1); the additional submeasure of strain 2EAT will lead
to terms of higher order in h/R in the constitutive equations and should not be necessary
in most practical problems. Furthermore, the assumption 0EiAV) <8C 1 is in harmony with
the initial Kirchhoff hypothesis, since for small middle surface strains any change in
thickness is likely to be negligible. In this connection, it is of interest to note that for
finite 0EAT , the formulation of the membrane theory of elastic shells, as given by Green
and Adkins [15], does account for thickness change.
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