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ON THE EIGENFUNCTIONS CORRESPONDING TO THE BANDPASS
KERNEL, IN THE CASE OF DEGENERACY*

By
J. A. MORRISON

Bell Telephone Laboratories, Murray Hill, New Jersey

Abstract. It has previously been pointed out that the eigenfunctions of the finite
integral equation with bandlimited difference kernel satisfy a certain second order linear
differential equation, containing one parameter, whose continuous solutions, for discrete
values of the parameter, are the prolate spheroidal wave functions. We consider here the
finite integral equation with bandpass difference kernel. It is shown that, in the case of
degeneracy, one eigenfunction is the continuous solution of a certain fourth order linear
differential equation, containing two parameters which must be determined from pre-
scribed conditions. The second eigenfunction is the derivative of .the first one.

1. Introduction. In the consideration of bandlimited functions there arises the
integral equation

\u(t) = J p(t — s)u(s) ds = Ku(t), (1.1)

where

p{t) = r'sinc/ = pc(t). (1.2)

It was pointed out by D. Slepian [1] that the self-adjoint differential operator

m = {J[(i - f) J] + (x - a*)} a.®
commutes with the integral operator K, i.e.,

UKu) - K(Lu) = 0, (1.4)
when p is given by Eq. (1.2). The differential equation Lu = 0 has continuous solutions
in the closed t interval [—1,1] only for certain discrete values of the parameter x, and the
corresponding solutions are eigenfunctions of the integral equation (1.1), which may be
deduced from Eq. (1.4).

Also of interest is the bandpass kernel

pa.h(t) = (fit)'1 sin bt cos at) a > b > 0. (1.5)

Now Slepian [2] has shown that there is in general no second or fourth order self-adjoint
linear differential operator with polynomial coefficients which commutes with the integral
operator K, when the kernal is given by Eq. (1.5). It is the purpose of this paper to
point out that such a fourth order operator does exist if u is even or odd and if, in addi-
tion, u is assumed to vanish at the end points, i.e., u(±l) = 0. The latter condition does
not hold in general since it implies that, if u(t) is an eigenfunction of Eq. (1.1) for some X,
then u'(t) is also an eigenfunction for the same value of X, as may readily be verified by
differentiating Eq. (1.1) and integrating by parts. Thus only in the case of degeneracy
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does such an operator exist. But Slepian and Pollak [3] mention that computations
indicate the existence of degenerate eigenvalues, for suitable values of a and b in the
kernel of Eq. (1.5).

In the next section we illustrate our approach in determining the differential operator
by first considering the simpler kernel given by Eq. (1.2).

2. Derivation of the second order operator. We seek a second order self-adjoint
differential operator

iWOJ - { g(t)~\ + Kt)u(t), (2.1)dt
which commutes with the integral operator K[u(t)], as defined by Eq. (1.1). Now,

L{K[um = u{s)[g(t)p"{t - s) + g'{t)P\t - s) + - s)] ds. (2.2)

Also,

9® T, + /(SMS) r ds- (2-3)K{L[um = j\ Pit ~ s)

Repeated integration by parts gives

K{L[u(t)]\= J ^u(s)[g(s)p"(t - s) - g'(s)p'(t - s) + Ks)p(t - s)] ds

+ [?(s) ys ~ s) + 9(s)u(s)p'(t _ s)] i • (2-4)

From Eqs. (2.2) and (2.4) it follows that L and K commute, i.e., Eq. (1.4) holds, if

£7(±1) = 0, (2.5)
and

m - g(s)]p"(t -S)+ lg'(t) + 0'(s)]p'(' - «) + m - MW - 8) = 0. (2.6)
We next consider the kernel of Eq. (1.2). It is readily verified that

Mc[p{t)] = p"(t) + 2 rlp'(0 + cp(t) = 0, for P = Pc(t). (2.7)

Using Eq. (2.7) to substitute for p"(t — s) in Eq. (2.6), and equating to zero the resulting
coefficients of p(t — s) and p'{t — s), we obtain

W) - Ks)] ~ c[g(t) - g(s)] = 0, (2.8)
and

2[g(t) - </(s)] = (t - s)[g'(t) + g'(s)]. (2.9)

Differentiating Eq. (2.9) twice with respect to t leads to g"'(t) = 0, and it is readily
verified that Eq. (2.9) is indeed satisfied if g is a quadratic function. Invoking Eq. (2.5)
and omitting a multiplicative constant,

g{t) = (1 - f). (2.10)
Then, from Eq. (2.8),
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m = (X - of), (2.11)
where x is a constant.

We have thus obtained, in a direct manner, the result quoted in the first section.
In a second paper [4] we obtain the general solution to Eqs. (2.5) and (2.6), wherein /, g,
and p are assumed to be analytic functions. The bandlimited kernel of Eq. (1.5) is not
a member of the limited class of analytic kernels pit) which permit solution. However,
from Eqs. (1.2) and (1.5),

Pa,b{t) = (2by1[Pa+b(t) - Pa-b(t)]. (2.12)

Also, from Eq. (2.7),

Ma+i{Ma-b[pm = Pw{t) + 4 ry3)(/)

+ 2(a2 + b2)[p"(t) + 2rV(/)] + (a2 - b2)2 p{t)

= Ma.b{Ma+b[p{t)]} = Ma,b[p{t)}. (2.13)

Hence, from Eqs. (2.7) and (2.12),

Ma,b[p(t)] = 0, for p = pa,b(t). (2.14)

It might therefore be expected that there is a fourth order differential operator which
commutes with the integral operator, K, Eq. (1.1), when p(i) = p„,h(t). In the next
section we investigate this possibility.

3. Derivation of the fourth order operator. We here seek a fourth order self-adjoint
differential operator

LW)] - | §]+![»« I. + K0u(t), (3.1)

which commutes with the integral operator K[u(t)], as defined by Eq. (1.1). Proceeding
in a manner similar to that of the previous section, it is found that Eq. (1.4) is satisfied if

W) - h(s)]p(4\t - s) + 2[h\t) + /i'(s)]p(3)(* - s)

+ {[h"{t) - h"(s)] + [g{t) - g(s)]}P"(t - s)

+ W(t) + g'(s)]p'(t — s) + [/(/) — Ks)]p(t — s) = 0, (3.2)
and

[{i[h(-s) S]+ g(-s) 1}p(t ~s) + {Ks) S +ff(s)M(s)} p'« ~s)

+ [m ^ ^ m(s)| p"[t — s) + h(s)u(s)pm(t — s)] = 0. (3.3)

We now make use of Eq. (2.14), where Ma,b[p(t)] is as defined in Eq. (2.13). Substi-
tuting for p'4> {t. — s) into Eq. (3.2) and equating to zero the coefficients of p(t — s),
p'{t — s), p"(t — s) and p<3>(£ — s), we obtain

[h\t) + h'{s)]{t -s) = 2[h{t) - /i(s)]; (3.4)

{[h"{t) - h"(s)] + [g(f) - g(s)]} = 2(a2 + b2)[h(t) - h(s)]; (3.5)
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[g'{0 + g'(sW ~s) = 4 (a2 + b2)[h{t) - h(s)]; (3.6)

W) - /(«)] = (a2 - bYm - h(s)}. (3.7)
From Eqs. (3.4) and (3.6),

g(t) - 2 [(a2 + b2)h(t) + 7], (3.8)

where 7 is a constant. It then follows from Eq. (3.5) that h"(t) is constant, and hence
that h(t) is a quadratic function. This is consistent with Eq. (3.4). From Eq. (3.3) it
may be deduced that /i(±l) = 0. Hence, omitting a multiplicative constant,

h(t) = (1 - f). (3.9)
From Eq. (3.7) we then have

Kt) = [5 - (a2 - b2)2t2}, (3.10)

where 8 is a constant.
We now return to Eq. (3.3) and satisfy it by the vanishing of the coefficients of

p{t — s), p'(t — s), p"{t — s) and p'3>(t — s), at s = ±1. It is seen that this requires that

u{± 1) = 0, (3.11)

so that we have degeneracy in the original integral equation, as explained in Section 1.
The only other conditions are

h'(s)u"(s) + g(s)u'(s) = 0, for s = ±1. (3.12)

Now if u is either even or odd, i.e.,

u(t) = u{—t), or u(t) = —u(—t), (3.13)

these two conditions reduce to a single condition

u"{ 1) = tw'U), (3.14)
using Eqs. (3.8) and (3.9). This condition may be regarded as defining 7.

Thus, to summarize, if

mm - |[(i - f) §] + i [7 + {a + 62)(1 - t)] g

+ [5 — (a — b2)2t2]u, (3.15)

and if u(t) is even or odd and satisfies the boundary conditions of Eqs. (3.11) and (3.14),
then L commutes with the integral operator K, i.e., Eq. (1.4) holds, where K[u(t)} is
defined by Eq. (1.1) with p(t) = pa.iit), as defined in Eq. (1.5). We draw our conclusions
from this result in the next section.

4. The significance of the commutation of the differential and integral operators.
Suppose now that L[u{t)] = 0, where L[u(t)] is as defined in Eq. (3.15), and in addition

that Eqs. (3.11), (3.13) and (3.14) hold. In order that wC4)(l) should be finite, Eq. (3.15)
gives, using Eqs. (3.11) and (3.14),

wC3>(l) = [57(7 - 1) - (a2 + b2)]u'( 1). (4.1)

Let u(t; 7, S) denote the solution to Lu = 0 which satisfies the boundary conditions of
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Eqs. (3.11), (3.14), and (4.1), with «'(1) = 1, say. It is supposed that a and b are given.
Then w(0; y, 8), u'(0; y, 8), u"(0; y, 8) and um(0; y, 8) are definite functions of y and 5.
But, for Eq. (3.13) to hold, we must have

u'(0;y, 8) = 0 = w<3)(0;y, 8), if u is even;

u(0;y, 8) = 0 = u"(0;y, 8), if u is odd.

Thus we have a dual eigenvalue problem for y(a2, b2) and 8(a2, b2).
Now we have seen that, under the above conditions on u, Eq. (1.4) holds. Since

Lu = 0, this implies that L(Ku) = 0. Now the equation Lw = 0 has two even, and two
odd, linearly independent solutions. At least one of these four solutions cannot remain
finite at t = ±1. But, from Eq. (3.15),

+ (1 - t2)
du d2w _ dw d2u\
dt dt2 dt dt2)

0 = (wLu — uLw)

,2n d2u] (if,, ,2s d2w~]

+ 2[y + (o- + b')( 1 -(')](«, - u (4.3)

Hence, if Lv = 0 and v has the same parity as u, we obtain on integration

d\ ti d2u\ d\M t2^d2v\ . ,2 Jdud2v dv dtu\
" sL(1"':> wl ~" a(1"':' m + (1"' ■\ii d? ~ a 1?)

+ 2h + (a° + 6=)(1 - (")](» f " » f) " 0. (4.4)
From Eqs. (3.11), (3.14), (4.1), and (4.4) it follows that v is finite at t = 1.

We have shown that L(Ku) = 0. But, from Eq. (1.5), we see that Ku has the same
parity as u, where

K[u(t)] = J p„,b(t — s)u(s) ds. (4.5)

Hence,

K[u{t)] = nu{t) + w(t), (4.6)

where fx and v are functions of a and 62 only. Thus we see that only for a specific relation-
ship between a and b2 will we have v = 0, and hence that it is a solution of the integral
equation (1.1), with the kernel of Eq. (1.5). Now, since u'( 1) 5^ 0, we may take f'(l) = 0
without loss of generality. Since w(l) = 0, it follows from Eqs. (4.5) and (4.6) that

f(l) ^ 0 and J pa,b(l — s)w(s) ds = 0 => v = 0. (4.7)

It may happen that y(l) = 0, necessarily. Since, by assumption, u'(l) = 0, it follows that
y"(l) 5^ 0 if y(l) = 0, for this would imply that v = 0, since Lv = 0 and v is finite at
t = 1. Hence, from Eqs. (3.14), (4.5), and (4.6),

v(l) = 0 and J [p"6(l — s) — yp'a,h(l — s)]«(s) ds = 0 => v = 0. (4.8)
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There is thus a straightforward, though lengthy, numerical procedure by which
eigenfunctions of the integral equation K[u{t)] = \u(t), where K[u(t)\ is defined by
Eqs. (1.5) and (4.5), may be obtained in the case of degeneracy, with w(±l) = 0. Suppose
that b2 is given. Choosing a value for a2, the first step is to find eigenvalues 7(a2, 62) and
8(a, 62), such that Lu = 0, where L[u(t)] is given by Eq. (3.15), and u is subject to Eqs.
(3.11), (3.13), (3.14), (4.1), and (4.2). A possible procedure is to integrate Lu = 0 from
t = 1 to t = 0 and to minimize (to zero) {[w'(0; y, 5)]2 + [w<3>(0; 7, 5)]2}, or
{[w(0; 7, 5)]2 + [w"(0; 7, <5)]2}, according as u is to be even or odd. Having determined 7
and 8 it is straightforward to compute the other solution Lv = 0, where v has the same
parity as u. The value of a must be adjusted, and the above procedure repeated, until
the condition of Eq. (4.7), or Eq. (4.8), holds, whichever is appropriate. In the next
section we give an analytical discussion of the limiting case b —» 0 in Eq. (1.5). The
results obtained could form a basis for the numerical computation for b > 0, although
such computations have not been attempted.

5. The limiting case b —» 0. We here consider the kernel

p(t) = lim pa,b(t) = cos at, a > 0, (5.1)
6-.0

where pa,6(<) is given by Eq. (1.5). The nonzero eigenvalues of the integral equation

\u{t) = J cos a(t — s)u(s) ds, (5.2)

are X = [1 + (2a)"1 sin 2a] and X = [1 — (2a)'1 sin 2a], with eigenfunctions cos at and
sin at, respectively. Thus degeneracy occurs when a is a (positive) integral multiple of
7r/2.

Now, from the results of Sections 3 and 4, letting b —> 0, we know that if

Lu -ib -'">§]+2
+ (6 — <x4/2)m = 0; u(l) = ± u(—t), (5.3)

and

w(l) = 0; u"{\) = 7W'(1); m<3>(1) = [h(7 " 1) - aV(D, (5.4)

then

J cos a(t — s)u(s) ds = ju0u(l) + v0v(t), (5.5)

where and v0 are functions of a2, Lv = 0 and v has the same parity as u. It is readily
verified that the eigenfunctions cos at, with a = (to + I)71", and sin at, with a = (to + 1)71-,
of Eq. (5.2), satisfy Eqs. (5.3) and (5.4) with 7 = 0 and 5 = a2(a2 —2). As a point of in-
terest we remark that with the choice, in the notation of Flammer [5], 27 = [Xin(a2) — a2],
5 = a2[Xln(a2) — 2], Eqs. (5.3) and (5.4) are satisfied by u(t) = (1 — t2)1/2S]n(a, t).

Now X = 0 is a eigenvalue, of infinite multiplicity, of Eq. (5.2). If we return to the
integral equation (1.1), with kernel given by Eq. (1.5), and assume that u(t) ~ ua(i) +
b2Ui(t) and X ~ b2\, , as b —> 0, then we have, in the limit,
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/.

1

cos a(t — s)u„(s) ds = 0, (5.6)

(5.8)

From Eq. (5.6)

(5.9)

From Eq. (5.7),

(5.10)

J cos a(t — s)(s) — | (t — s)2tt0(s)J ds = Xiu0(t). (5.7)

From Eqs. (5.6) and (5.7), the even and odd eigenfunctions, for X, =£ 0, have the form
(omitting a multiplicative constant)

uoif) = V cos at + ^sin at, (even)

Unit) = q sin at + t cos at, (odd).

(cos 2a sin 2aV« . sin 2a\-1
~2r ~ is^A1 + •

(cos 2a sin 2aV, sin 2a\-1

l r1Xl3= - J s sin as u0(s) ds, (u„ even)

l r1X] = - J s cos as «0(s) ds, (u0 odd).

Now m0(1) = 0 when, from Eqs. (5.8) and (5.9),

sin a cos2 a — a cos a — 2a2 sin a = 0, (u0 even)

sin2 a cos a + a sin a — 2a2 cos a = 0, (w0 odd).

If Eq. (5.11) is satisfied there is degeneracy and u'0{t) is also an eigenfunction. It may
be verified, using Eqs. (5.8)-(5.10), that the values of corresponding to the even and
odd eigenfunctions are then equal, and moreover these are the only conditions under
which they are equal. The question arises as to whether or not the eigenfunctions, with
w0(l) = 0, in the cases of degeneracy are solutions of the differential eigenvalue problem,
Eqs. (5.3) and (5.4). This may readily be verified to be the case. Returning to the integral
equation, degeneracy presumably occurs in the eigenvalues of 0(b2m) as b —> 0, for all
positive integers m, and presumably the eigenfunctions, with i<0(l) = 0, in all these
cases of degeneracy are solutions of the differential eigenvalue problem.
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