THE SPECTRA OF IRROTATIONAL FLOWS*

BY C. R. PUTNAM (Purdue University)

1. Introduction. In the *n*-dimensional Euclidean space of points $x = (x_1, x_2, \dots, x_n)$, let f(x) denote a vector of class C^1 on some region (connected open set) R. Suppose that R is an invariant set of the system of equations

$$x' = f(x) \qquad (x' = dx/dt), \tag{1}$$

so that if x_0 is any point of R, then the solution x = x(t) of (1), satisfying $x(0) = x_0$, exists and lies in R, for $-\infty < t < \infty$. It will be supposed that there exists a positive function $\rho = \rho(x)$ of class C^1 in R for which

$$\operatorname{div}\left(\rho f\right) = 0. \tag{2}$$

Then the system (1) has an invariant measure m, where $dm = \rho dx$, on R. Thus, $m(T_t(A)) = m(A)$ if A is a measurable set in R and T_t denotes the transformation

$$T_t: p = x(0) \to p_t = x(t) \tag{3}$$

determined by (1). See Hopf [2], p. 8.

The transformation $g(p) \to g(p_t)$, together with the measure m, determines a unitary transformation U_t of the Hilbert space $L^2(R)$ into itself. For each fixed t, let $U = U_t$ have the spectral resolution

$$U = \int_0^{2\pi} e^{i\lambda} dE(\lambda) \qquad (E(\lambda) = E_i(\lambda)). \tag{4}$$

The operator U will be called absolutely continuous if $(E(\lambda)g, h)$ is an absolutely continuous function of λ for each pair of functions g, h of $L^2(R)$. In case t = 0, then U = I, the identity transformation.

The zeros (in R) of the vector f constitute the set E of equilibrium points of (1). Thus, if p = x(0) is in E, the solution x(t) of (1) satisfies x(t) = x(0) for $-\infty < t < \infty$. It is clear that E is an invariant set and that the restriction of U_t to E is, for all t, the identity transformation. Moreover, since f is continuous, it is clear that the intersection of E with any closed subset of E is a closed set. It follows that $E \neq R$ if and only if e if e is a closed set. It follows that e if e if and only if e if e is a closed set.

There will be proved the following

THEOREM. Let (1) satisfy (2) and in addition let there exist a function $\phi = \phi(x)$ of class C^2 on R for which

$$f = \operatorname{grad} \phi. \tag{5}$$

(i) If $E \neq R$, then the restriction of U_t to R - E is for all $t \neq 0$ an absolutely continuous unitary operator whose spectrum is the entire unit circle |z| = 1. (ii) If, in addition to (5), the system (1) satisfies, instead of (2), the incompressibility condition

$$\operatorname{div} f = 0, \tag{2'}$$

^{*}Received April 23, 1962. This work was supported by the National Science Foundation Research Grant NSF-G18915.

so that dm can be taken to be dx, then either R = E (hence $U_t = I$ on R for $-\infty < t < \infty$) or E is a zero set. In the latter case, by (i), U_t is for $t \neq 0$ absolutely continuous on R and has the unit circle as its spectrum.

2. Remarks. Conditions (2) and (5) imply that $m(R-E)=\infty$ whenever $E\neq R$. For (ii) asserts that U_t for $t\neq 0$ is absolutely continuous on R-E and hence, in particular, U_t has no point spectrum. But, if $0 < m(R-E) < \infty$, then the characteristic function of R-E would be an eigenfunction of U_t belonging to the eigenvalue 1, a contradiction.

In case (2') and (5) hold, so that (1) is incompressible and irrotational, then by (ii), either R = E or E is a zero set and so, as noted above, $m(R) = \infty$. It is interesting to compare this result with an exercise in Kellogg [3], p. 215, Ex. 2. It can be noted that when n = 3 and R is simply connected the condition (5) is a consequence of the irrotationality assumption on the flow; cf., e.g., Kellogg [3], p. 74.

Special cases of the theorem were considered in [4], cf., p. 229. When n=1, the system x'=1 is incompressible and has solutions x(t)=t+x(0); the unitary operator U_t is then the translation operator on $-\infty < t < \infty$. It follows from the above Theorem (and was also shown in [4]) that U_t is absolutely continuous with the spectrum |z|=1. This last assertion can also be deduced directly from considerations similar to those given in Hille [1], pp. 329 ff.

3. Proof of the Theorem. In order to prove (i), suppose that $E \neq R$ and that t > 0. Then for p in R and t fixed, it follows from (1) and (5) that $d\phi/du = |\operatorname{grad} \phi|^2$ along the path p_u from u = 0 to u = t $(p = p_0)$ and hence

$$d(p) = \phi(p_i) - \phi(p) = \int_0^t |\operatorname{grad} \phi|^2 du.$$
 (6)

If p is in R - E then clearly d(p) > 0. The desired assertion (i) now follows from the theorem of [4], p. 228.

In order to prove (ii), note that relations (2') and (5) imply that ϕ is harmonic in R. If ψ denotes any one of the components of grad ϕ then ψ is also harmonic and $\psi = 0$ on E. Hence if E has positive measure, then $\psi \equiv 0$ on R,* and so R = E.

REFERENCES

- E. Hille, Functional Analysis and Semi-Groups, American Math. Soc. Colloquium Publications, 31, 1948
- 2. E. Hopf, Ergodentheorie, Chelsea Publishing Co., New York, 1948
- 3. O. D. Kellogg, Foundations of Potential Theory, Springer, Berlin, 1929
- 4. C. R. Putnam, Commutators, perturbations and unitary spectra. Acta Math., 106 (1961) 215-232

^{*}What is needed here is the following fact: If C is a closed set of positive measure contained in some region R and if ψ is harmonic in R and satisfies $\psi = 0$ on C, then $\psi \equiv 0$ on R. Although this is well-known in case C contains an open set (at least if $n \leq 3$), the author did not find a reference in the literature dealing explicitly with the problem at hand. A proof can be obtained by noting that ψ is a real analytic function of n variables in a region R and that, unless $\psi \equiv 0$ in R, the zeros of such a function form a set of n-dimensional Lebesgue measure zero. A proof of this last fact using the Lebesgue density theorem was pointed out to the author by H. Flanders. Another proof can be obtained by noting, first, that for n = 1 the assertion in question is a consequence of the identity theorem for power series in one variable and, second, that for a power series in n variables, it can be deduced from the corresponding assertion in the one dimensional case by an application of Fubini's theorem for multiple integrals.