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THE SPECTRA OF IRROTATIONAL FLOWS*
by C. R. PUTNAM (Purdue University)

1. Introduction. In the n-dirnensional Euclidean space of points x = (x{ , x2, ■ • ■ ,xn),
let f(x) denote a vector of class C1 on some region (connected open set) R. Suppose that
R is an invariant set of the system of equations

x' = f(x) (x' = dx/dt), (1)
so that if x0 is any point of R, then the solution x — x(t) of (1), satisfying a;(0) = x0 ,
exists and lies in R, for — co < t < <». It will be supposed that there exists a positive
function p = p{x) of class C1 in R for which

div (p/) = 0. (2)
Then the system (1) has an invariant measure to, where dm = p dx, on R. Thus,
m(Tt(A)) = m(A) if A is a measurable set in R and T, denotes the transformation

T, : p = z(0) —> pt = x(t) (3)

determined by (1). See Hopf [2], p. 8.
The transformation g(p) —> g(pt), together with the measure to, determines a unitary

transformation Ut of the Hilbert space L2(R) into itself. For each fixed t, let U = XJt
have the spectral resolution

U=readE(X) (E(X) = E,(X)). (4)
Jo

The operator U will be called absolutely continuous if (E(X)g, h) is an absolutely con-
tinuous function of X for each pair of functions g, h of L2(R). In case t = 0, then U = I,
the identity transformation.

The zeros (in R) of the vector f constitute the set E of equilibrium points of (1).
Thus, if p = a:(0) is in E, the solution x(t) of (1) satisfies x(t) = x{{)) for — «= < t < <x>.
It is clear that E is an invariant set and that the restriction of Ut to E is, for all t, the
identity transformation. Moreover, since / is continuous, it is clear that the intersection
of E with any closed subset of R is a closed set. It follows that E ^ R if and only if
m{R — E) > 0.

There will be proved the following

Theorem. Let (1) satisfy (2) and in addition let there exist a function <j> = </>(x)
of class C2 on R for which

f = grad 4>. (5)
(i) If E R, then the restriction of Ut to R — E is for all t ^ 0 an absolutely continuous
unitary operator whose spectrum is the entire unit circle | z | = 1. (ii) If, in addition to (5),
the system (1) satisfies, instead of (2), the incompressibility condition

div / = 0, (2')
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so that dm can be taken to be dx, then either R = E (hence Ut — I on R for — <*> < t < co)
■or E is a zero set. In the latter case, by (i), U, is for t ^ 0 absolutely continuous on R and
has the unit circle as its spectrum.

2. Remarks. Conditions (2) and (5) imply that m(R — E) — <» whenever E ^ R.
For (ii) asserts that Ut for t ^ 0 is absolutely continuous on R — E and hence, in par-
ticular, Ut has no point spectrum. But, if 0 < m(R — E) < then the characteristic
function of R — E would be an eigenfunction of U, belonging to the eigenvalue 1, a
contradiction.

In case (2') and (5) hold, so that (1) is incompressible and irrotational, then by (ii),
■either R = E or E is a zero set and so, as noted above, m(R) = °o. It is interesting to
■compare this result with an exercise in Kellogg [3], p. 215, Ex. 2. It can be noted that
when n = 3 and R is simply connected the condition (5) is a consequence of the ir-
rotationality assumption on the flow; cf., e.g., Kellogg [3], p. 74.

Special cases of the theorem were considered in [4], cf., p. 229. When n = 1, the
rsystem x' — 1 is incompressible and has solutions x(t) = t + x(0); the unitary operator
Ut is then the translation operator on — <» < t < oo. It follows from the above Theorem
(and was also shown in [4]) that U, is absolutely continuous with the spectrum | z J = 1.
This last assertion can also be deduced directly from considerations similar to those
given in Hille [1], pp. 329 ff.

3. Proof of the Theorem. In order to prove (i), suppose that E 5* R and that t > 0.
Then for p in R and t fixed, it follows from (1) and (5) that d<f>/du = | grad <j> |2 along
the path pu from u = 0 to u = t (p = p0) and hence

d(p) = 4>(pt) - tj>(p) = f | grad <f> |2 du. (6)
Jo

If p is in R — E then clearly dip) > 0. The desired assertion (i) now follows from the
theorem of [4], p. 228.

In order to prove (ii), note that relations (2') and (5) imply that 4> is harmonic in R.
If ip denotes any one of the components of grad 4> then •p is also harmonic and \p = 0
-on E. Hence if E has positive measure, then = 0 on R* and so R — E.
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*What is needed here is the following fact: If C is a closed set of positive measure contained in
some region R and if is harmonic in R and satisfies if = 0 on C, then = 0 on R. Although this is
well-known in case C contains an open set (at least if n g 3), the author did not find a reference in the
literature dealing explicitly with the problem at hand. A proof can be obtained by noting that tp is a
real analytic function of n variables in a region R and that, unless \p sOinB, the zeros of such a function
form a set of n-dimensional Lebesgue measure zero. A proof of this last fact using the Lebesgue density
theorem was pointed out to the author by H. Flanders. Another proof can be obtained by noting, first,
that for re = 1 the assertion in question is a consequence of the identity theorem for power series in
one variable and, second, that for a power series in re variables, it can be deduced from the corresponding

-assertion in the one dimensional case by an application of Fubini's theorem for multiple integrals.


