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A NOTE ON THE PRINCIPLE OF MININUM POTENTIAL ENERGY FOR
LINEAR ANISOTROPIC ELASTIC SOLIDS*

By M. E. GURTIN (Brown University)
Introduction. The displacement equations of equilibrium in the linear theory of

homogeneous elastic solids, with reference to rectangular cartesian coordinates x; and
in the usual indicial notationt, appear as

Cimtaa; + fi = 0, | (1)

‘where
Ciikt = Criij » @
Ciikt = Ciikl + ®

Here u;(x) and f;(x) are the cartesian components of the displacement vector u(x) and
of the body-force density f(x), respectively, while ¢,;;, are the cartesian components of
the constant elasticity tensor ¢. The present paper is concerned exclusively with the
displacement boundary-value problem of elastostatics. This problem consists in de-
termining a vector field u(x) which meets (1) throughout the region of space D occupied
by the medium, subject to the boundary condition

u=u*x) on B, C))

where B is the boundary of D.

The principle of minimum potential energy (as applied to the displacement boundary-
value problem) asserts that among the vector fields satisfying the boundary condition
(4) one which also meets the field equations (1) on D is characterized by an absolute
minimum of the functional

Pu] = 3 fD Coinii, it AV — fD faug dV. (5)

The conventional proof of the principle rests on the assumption that the elastic constants
satisfy the symmetry conditions (2), (3), as well as inequalities which are necessary
and sufficient for the positive definiteness of the strain-energy density. Thus it is assumed
that

C;ik16:iCr1 > 0 if e #* 0, (6)

for every symmetric second-order tensor e. _
The question as to whether the foregoing requirements on ¢ are necessary for the
validity of the minimum principle is of theoretical interest and is relevent to certain
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considerations in nonlinear elasticity theory. It is the purpose of the present note to
show that the principle continues to hold for the displacement boundary-value problem
if the tensor ¢ meets merely (2), as well as

Ciimdimime > 0 if E#0, n >0, )

for every pair of vectors £ and n. The inequality (7) represents a necessary and sufficient
condition that the system of partial differential equations (1) be strongly elliptic [1].
Toupin and Bernstein [2] have shown that (7) admits a simple intrinsic interpretation:
an (anisotropic) elastic body propagates plane waves with positive real speeds if and
only if (7) holds. Finally we note that (2), (3), and (6) together imply (7).

A generalization of the principle of minimum potential energy. In what follows we
assume that the region occupied by the solid is a bounded, regular region of space, i.e.
a closed region D 4+ B whose boundary B consists of a finite number of non-intersecting
closed regular surfaces, the latter term being used in the sense of Kellogg [3].

THEOREM. Let u(x) be twice continuously differentiable on D + B and meet the partial
differential equation (1) on D, as well as the boundary condition (4) on B. Let ¢ satisfy the
symmelry condition (2) and the strong ellipticity condition (7). Let K be the class of (kine-
matically admissible) vector fields u’(x) which are twice continuously differentiable on
on D 4+ B and meet

u’ =u*(x) on B. €]
Then
®[u] = min #[u’] overall u’'e K 9

where ® is the functional defined by (5), and this absolute minimum is assumed by ®[u’]
onlyifu =u’on D + B.

With a view toward a proof of this theorem we cite the following far reaching lemma
due to van Hove [4]. g

LemMa. Let v(X) be twice continuously differentiable on D + B, with v = 0 on B.
Let ¢ be a fourth order tensor which meets (7). Then

f CiinVi, Vs > 0, (10
D

if v does not vanish identically on D + B.

We now turn to the proof of our theorem. First, it is evident that u ¢ K. Thus it is
sufficient to show that

®u] < o[u’], (11)
if u is not identically equal to u® on D. To this end let
u=u"—u on D. (12)
Then, by (2),
Coana¥e, Unt = Cipp! b F Coprai, Uxs + 26i50U0 Mat (13)

and hence, using (5) and (12),

q)[uo] — Pu] = %Lciikzuf.iui.z av + Lciikzuf.iuk.z av — fD fauldV. (14)
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In view of (4), (8), and (12),
u =0 on B. (15)

Thus, from (15), (1), and the divergence theorem

f ciikluz.iuk.l dV = _f C,','“uk,”uz dV = [ f,u: dV. (16)
D D D

The inequality (11) now follows from (14), (16), and van Hove's lemma. This completes
the proof.
Discussion. The uniqueness of the solution to the boundary-value problem char-
acterized by (1) and (4) is a corollary of the preceding theorem*, if ¢ meets (2) and (7).
For an isotropic elastic solid we have in particular

Cijkt = [5.1; 80 + 81 8 + 2 0ij 51:1] ) (17)

while (6) becomes
w >0, -1<o<4, (18)

where 1 and o, respectively, denote the shear modulus and Poisson’s ratio of the material.
That (18) is not necessary for the truth of the principle of minimum potential energy
was apparently observed first by Hill [6], who showed that the principle, with limitation
to the displacement boundary-value problem, holds if (18) is replaced by the less re-
strictive assumption**

p>0, —o <eg<1i, 1<o< o, (19)

But (19), by virtue of (17), is equivalent to (7). Thus the theorem given in the present
paper is a generalization to anisotropic elastic solids of Hill’s result for the isotropic
case. When p < 0 the minimum energy principle gives way to an analogous maximum
principle. Finally, it is clear from counter-examples due to Ericksen and Toupin (7]
and Ericksen [8] that uniqueness of the solution to the displacement boundary-value
problem fails when p = O or 3 < ¢ < 1. Since the minimum principle implies the unique-
ness theorem, (19), and hence (7), cannot be further weakened.f
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