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-NOTES-

AN APPROXIMATE METHOD IN SIGNAL DETECTION*

By WALTER F. FREIBERGER** (Brown University)

Abstract. A theorem from the theory of Toeplitz forms (ref. 1) is applied to the
problem of estimating the best test statistic for the detection of Gaussian signals in
-Gaussian noise.

Let x(t) be a stationary Gaussian process, mean zero, sampled at successive time
points to provide an observer with a finite sample

x = (Xi , x2 , • •• , xn). (1)

The time points are to be closely spaced to produce almost unit correlation. It is known
to the observer that (1) is either a sample from a Gaussian ensemble 00 with mean zero
and power-density spectrum /0(X) or a sample from a Gaussian ensemble Qi with mean
zero and power-density spectrum /i(X), and he is to decide whether (1) came from 0()
or Qi . We take 9.0 to be noise alone and signal plus noise and write

/o(x) = m (2)
MX) = /n(X) + /,(X) (3)

where /„(X) and /»(X) are the power spectral densities of noise and signal, respectively;
the noise and signal processes are here assumed independent and their spectral densities
thus additive.

Let H0 denote the hypothesis that noise only is present and Ht that we observe
signal plus noise. If Q = {co} = ^ denotes the sample space of all possible realiza-
tions of the process x(t) in a finite interval of time, so that co is a function of te(0, T),
then we define a critical region

W C 0 (4)
in the sense that

if w t W, H0 is rejected;

if co i W, H0 is accepted.

The probability that H0 be rejected though true is denoted by P0(W), that it be accepted
though false by Pi (IF*), and the power of the test, i.e. the probability of rejection of II„,
consequently by

P,{W) = 1 - Pi(TT»). (5)
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It is well known that although perfect detection is not possible in the case we are con-
sidering, the most powerful critical region WMp is given by the Neyman-Pearson test

WMP = {x | L(x) > c} (6)

where the likelihood function L(x) is given by

L(x) = Plfa .Si."' > *-) . (?)
Po{x! , X2 , • • • , Xn)

Here, p0(x) and Pi(x), the probability densities induced on 0 by II0 and II1, respectively,
are given by

"■(x)°(2,rvdet«,e'"'(""'Rr','); (9)

R0 is the covariance matrix of the noise, Ri that of the signal plus noise; these are given by

Ro = /* «<("rt/0(X) d\-v, M = 1, 2, • • • , nj (10)

and similarly for R1 . Hence

L(x) = K exp [fx*^"1 - R;1)*]. (11)

The likelihood function is thus a monotonically increasing function of the quadratic form

x*(Eo_1 — Ri')x = x*Qx, say; (12)

hence

Wmp = {x | x*(Ro1 — Ri ')x > c}. (13)

For practical purposes (12) is not a convenient expression since its use requires the
inversion of large matrices. We shall now show how a theorem from the theory of Toeplitz
forms (ref. 1) can be applied here to obtain a computationally feasible procedure. A
similar approximation has previously (ref. 2) been found effective for the estimation
of the spectral density of a random process.

The probability density of the quadratic form (12) can be looked on as being com-
pletely determined

(i) under hypothesis H0 , by the eigenvalues of the matrix

QR0 = / — R^Ro ; (14)
(ii) under hypothesis Hi , by the eigenvalues of the matrix

QR1 = Ro'Ri - /. (15)

Approximations to the distribution of quadratic forms such as (12) are considered in
ref. 1. It is shown that the distribution is asymptotically normal, but since the matrices
are nearly of Toeplitz character, closer approximations are suggested by Toeplitz theory.
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It can be shown that, if ju0 denotes the trace of QR0 and mi the trace of QRX ,

i r /.ft) - foW
Ho

Mi

r m - /o(x)
2tt i_x A(X) flA' (16)

This suggests that we should use for our computations the quadratic form

x*Q„x

where

«■ - C <I8)
and construct what we might call the "approximately most powerful test"

WaSIP = {x | x*Q„x > c} (19)

where, with (2) and (3),

- x*0 x = f Y1 x e<l'~")Xx   d\ (20)nX lIa 2m J_x X'6 X" /„(X)[/„(X) + /.(X)] W

But we know (cf. ref. 3, p. 91) that

1
2-irn J2 x»e"j»X = 100, (2D

the periodogram, which is an unbiased and inconsistent estimate of the spectral density
i(X) of the process x(t). Thus,

n L. '(X) jJwM + 7M ',A
- an estimate of /__ f(X> m <&. (22)

Hence, the approximately best test statistic is a weighted periodogram. The resulting
signal detection method could therefore be represented schematically as follows:

x(t) filter
signal present

signal absent

The filter will have to have the relevant characteristic, viz

I /.(X) .
V/»(X)[/B(X) + /.(X)] '

the power meter is a quadratic integrator. With this procedure, then, we do not have to
invert large matrices but can construct simple physical devices; it is also suitable for
high-speed computation.
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To test the accuracy of this method, the frequency functions corresponding to the
most powerful test based on

x*Qx
and the approximately most powerful test based on

x*Qax

were computed and compared numerically for a simple case.
We chose for the covariance matrix of the noise the unit matrix

R0 = N = I

and for the covariance matrix of the signal

Rt — R0 = S = {s„„ ; v, ju = 1,2, • • • , n\

with

_ 1 f 1 P r<(»-i»)X j-. . U-dl* ~ 2x J_, I ! _ pc" |" dK-f

The spectral density of the noise is, hence, /n(X) = 1 and that of the signal

m - |" i,,I 1 ~ pe |
is the Poisson kernel which, for values of p fairly close to 1, is narrow-band. The param-
eters chosen were

n = 20, p = .7.

If we denote the eigenvalues of S by X, , those of

Q = N"1 - (N + S)'1 = /-(/+ S)'1

will be

1 ~ 1 + X/

We denote by g0(x) the frequency function corresponding to the eigenvalues

11 - 1 + X„

and by ffi(x) that corresponding to the eigenvalues A„ . These are then the "exact"
frequency functions.

For the approximate theory, we define the matrix Qa with elements

1 - P2
t X 12

t (v-m)e d\
tX 12

= r /-W =± f i 1 - pe'
2ir J_, /B(n)[/„(X) + /.(X)] 2x J_, 1 + 1 -

I 1 - /
_ i - p r

2t J-t | 1 — pe,x |2 —1 — p"

It,— pe
( v~n) X

— dX.
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E g, = 20

Er = 19.5997

Fig. 1

E g0 * 7.278

E Y = 7.141

Fig. 2

By choosing the constant r as the solution of the equation

r[( 1 - P2) + (1 + p2)] = P(1 + r2)

such that 0 < r < 1, lvll can be brought to the form

I = —— [ —- — p—e<c'"">xdX =  ——5-— [ —^ ~ r e'
2irp Lw\i- reiX I2 p(l — P ) J_T M _ re,x |2

d\

 t 
P(1 - P2) '
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since is the Fourier transform of (1 — r2)/| 1 — re*x |2. The eigenvalues of

Qa = {1,11 ; v, M = 1, • • • »w}, w = 20, p = .7

are computed to give the frequency function y0(x) which is to be an approximation to
g0(x) as defined above.

Similarly, the eigenvalues of

QaRl = Qa(Ro + S) = Qa(I + M)

are found and used to determine the frequency function ji(x) which serves as an approxi-
mation to g, Cx) as defined above.

Figures 1 and 2 show the curves g0(x), y0(x) and gx{x), yi(x), and agreement is seen
to be very good.

Acknowledgment. Thanks are due to Professor Ulf Grenander on whose work and
suggestions this paper is based.
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