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By
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1. Introduction. There are many physical problems in which one wishes to solve
linear partial differential equations. For example, in steady-state diffusion theory we
may encounter the equation,

V-{/(r)V«} + X(r)0 + S(r) = 0. (1)
A particularly useful approach to solving equations of this type is through the use of
finite difference schemes. The simplest finite difference schemes for solving this problem
in two space dimensions involve approximating the second partial derivative term by a
five-point difference. We will confine our attention to solving (1) in two dimensions
using five-point difference schemes although the method is applicable to more dimensions
and higher order partial derivative terms.

Our procedure then involves replacing (1) by a set of five-point difference equations
defined over a space mesh. Our general mesh is set up as shown in Figure 1. We define
our problem in terms of an N X N mesh. Our actual physical problem may have bound-
aries such as those indicated by the dotted line. In such a case we simply consider only
the points which fall inside the dotted line as internal points. However, for notational
convenience we still maintain the N X N mesh notation. For the sake of simplicity we
will begin in Section 2 by considering a problem with N X N internal points. Then in
Section 3 we will indicate how the boundary conditions are treated for more general
boundary shapes.
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Fig. 1. A typical mesh.
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The five-point difference equation at a point i in the mesh is

B)-Nd^N + Bi-%., + B)+Idi+1 + B\+N6i+N + Bid, + s, = 0. (2)

Thus, our problem reduces to a set of simultaneous, linear equations of a particular
type. In matrix notation (2) is written,

50 + s = 0. (3)

We will adopt the convention that capital letters refer to matrices and lower case, bold
faced letters refer to vectors. The matrix B has the following appearance.

~B\ B\
B\ B\

0 Bl
0

0

Bn+ ! 0

0 B2

B =

JV+ 2

(4)

The arrows indicate the non-vanishing diagonals. All the remaining elements are equal
to zero.

Most of the methods which have proved useful for solving such a linear system
involve two basic techniques—matrix factorization and relaxation methods. In the
corresponding one-dimensional problem the matrix B is tri-diagonal and can be factored
exactly in a very trivial way [1] thus allowing a very practical, non-iterative method for
solving the problem. This factorization is not so easy in the case of the matrix (4) and
there seems to be no very practical way of obtaining a non-iterative solution of (3).
However, use has been made of the basic-idea of matrix factorization in setting up
iterative procedures for solving (3). For example, one can replace the time by an iterative
parameter in the alternating direction method [2] and also in a method proposed by
Baker and Oliphant [3]. Another method -has been recently proposed by the present
author [4], This latter method will be referred to below as Method I. Although Method I
was originally applied to time-dependent problems involving nine-point space differences,
it can equally well be applied directly to steady state problems involving five-point
space differences as will be shown below. When we refer to Method I below we will
understand it to be applied in the latter sense. Two of the best known types of relaxation
methods are the methods of extrapolated simultaneous iteration [5] and the methods of
extrapolated successive iteration [5], [6]. The latter methods are sometimes referred to as
successive,,p,ver-relaxationi:methpds and we will refer to them collectively (including the
case of under-relaxation) as the S. R. method. , .
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The basis of the present work is the recognition of the similarity between Method I
and the S. R. method. In the latter method the whole upper triangular part of the matrix
B is transposed to the right-hand side of the equation to operate on the guessed solution,
whereas in Method I only part of it is. Because of the similarity of the above two methods,
it was found that the extrapolative techniques used in the S. R. method can also be
applied to Method I. Another aspect of the present work is the use of the more standard
matrix notation in contrast to the notation used previously [4] in which the vectors had
a double subscript.*

2. Derivation of the Method. In order to illustrate fully the connection between
Method I and the S. R. method we formulate the problem generally with a parameter
k. For k = 0 the method reduces to pure S. R., for k = 1 the method reduces purely to
Method I and there are various combinations of the two methods for other values of Jc.

Now, let us consider the solution of (2). The matrix B can be broken up as follows.

B = L + U + D (5)
where L contains just the lower two diagonal parts of B, U contains just the upper two
diagonal parts of B and D contains just the main diagonal of B. Then (3) can be written,

(L 4- U + £>)« = -s. (6)
Instead of transposing to the right hand side the whole matrix U, we retain a fraction
k of U on the left hand side. Thus,

(L 4- kU 4- D)0 = -s - (1 - k)U6. (7)
We rewrite this as

C6 = d (8)
where

C = L 4- kU + D (9)
and

d = -s - (1 - k)U6. (10)
Now, let us define a lower triangular matrix W of the form

~W{ 0  

W\ Wt 0  
0 wt wl o ... .

w =
0
m+1 o
o w':l + 2

(li)

*The author is greatly indebted to P. M. Stone of Los Alamos for pointing out the obscurities of
the previous formulation and assisting in the reformulation of the present work.
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and an upper triangular matrix V of the form

~1 V\ 0 • • • 0 7f+1 0

V =

0 1 vl 0 ... o f2v+2

• o i vi o • • • o
(12)

The arrows indicate the non-vanishing diagonals. All the remaining elements are equal
to zero. The matrix elements of W and V can be determined so that the matrix relation

WV = C + H (13)

holds where H has non-vanishing elements only where C has vanishing elements and
vice versa. On forming the matrix product WV, we see that the matrix II must have
the form

~0 0 • • 0 0 0

0 0 0 H%+1 0

0 H%+2

H = 0

0 0
0 Hi,i 0
• 0 H.

(14)

N+2

0

The representation of the non-vanishing diagonals by arrows is the same as before.
Comparing the elements of WV with those of C, we see that the elements of W and V
are completely determined by the following chain of algebraic equations

W\~N = B\-n (15)

wr = Br (16)
w• = b\ - wrNvi-N - wi'1 v'-i (17)

7;:+w = Wi (18)
w;
•Br-
wi

frR' + 1vr = d9)
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The elements of WV corresponding to the non-vanishing elements of H are now already
determined. We define H by setting the elements of II equal to these remaining elements
of WV which were not used in setting up the chain (15)-(19). The non-vanishing ele-
ments of H are therefore given by

Hi*"'1 = TCT'F^r1 (20)
for the upper diagonal and

h<-n+i = wi~Nvi:%+1 (21)

for the lower diagonal.
Operating on 0 with (13), we have

WVd = C6 + He. (22)

Then, using (8), we replace C0 in (22) by d obtaining

WVO = d + //6. (23)

Replacing d by its definition (10), we write

WV0 = -s + [H - (1 - k)U]0 (24)
where now the appearance of 0 is explicit. We now set up our iterative procedure in the
following way.

WV0in+1) = -s + [H - (1 - fc)C/]0<n) (25)

where the superscript (n) refers to the n-th iterate. We rewrite this as

lFF0(n+1' = h (26)

where

h = -s + [H - (1 - fc)[/]0<n) (27)

The elements of h are then determined by the algebraic relation

h; = -s. + [W^V^d^ + TFr'F^r1^-!]
- (1 - k)[Bi+Ne^N + (28)

Since W and V are easy to invert, we can calculate 0("+1) by using

6C„+1> = y-(29)

This can be written as
© (n+1) = F-,g (30)

where

g = W" h. (31)

Writing (31) and (30) out algebraically, we obtain for the elements of g and 0("+1),
respectively,

h< - wi~Ngi-N - Trr'g,-.
y< ~ yyi
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and

0<-+1) = sr.- - vi+"ew - vreW. (33)
We now summarize our basic - computational formulas in algebraic form for the

unextrapolated case.

W\-N = B'~N (34)

Wr1 = B'r1 (35)
Wl = B\ - W\~nV\-n - Wy'VU, (36)

1LD» + ^

V\+N = —pr- (37)

1rRi + 1
V"1 = (38)

h< = + [wi~Nviz%+1e^N+1 +

- (1 - k)[B\+N6^N + Bi+19^ (39)

h< - wi-Ngi.N -
9i - Wi (.4U)

0;n+i) = g> - rre'^ - (41)

Our computation proceeds in the following way. First, we sweep through the mesh
from low to high values of i, computing the W and V elements using (34)-(38) and storing
them for later use in the iterations. Our iteration procedure then goes as follows. We
sweep from low to high values of i computing and storing g{ using (39), (40) and the
n-th iterate 0-n>. Then, using (41), we obtain d\n+l) by sweeping back from high to low
values of i. We continue to iterate until successive iterates agree with each other to the
desired accuracy.

The extrapolated method is obtained by simply replacing (41) by

rtn+1> = 4<7,. - - rt+ieliv>] + (1 - «)0,(n> (42).
where « is the extrapolation parameter.

3. The boundary conditions. We now set up our computational formulas to take-
care of such regions as the one enclosed by the dotted line in Figure 1. First, we define
the quantities I\ and A< .

[ 1 if i is an internal point. 1
1 i = < If (43)LO if i is not an internal point.J

At = 1 - r,- (44)

Our computational formulas are written,

w'r" = (45)
wr1 = B)-1 r,_x (46)

w\ = b\ - wrNv\-N - wrlvu (47)



1962] EXTRAPOLATION PROCEDURE FOR SOLVING LINEAR SYSTEMS 263

J-R*+Jv
f;+" = iw (48)

i-Ri + 1
Fi+1 = r,+l (49)

hi = -Si + + TFrF'ir^V-iiw,]
- (1 - k)[Bi+Ne^ri+N + sr^xiv,]
- [BrNe?JN A,-at + B\~l9?2, A,_j

+ Ai+1 + Ai+JV]. (50)

The d[h) are boundary values.

hi - W)~Ngi-NTi-N - WTft-.r,
if* (51)

tfi»+1) = cc[g< - vi^e^ri+„ - vre&»rM-\ + (1 - o,)^"' (52)

The computational procedure is the same as that described in Section 2 except that
mow it is understood that we actually calculate only when i is an interior point of the
region.

4. The convergence condition. Let us define the errors tu+1) and eU) by

0<n+1> = etrue + e(n+1) (53)

e(n) = etru. + E(">. (54)

■Substituting (53) and (54) into (25) we obtain

E(n+1) _ T/-lTr/-lV W [H - (1 - k)uyn\ (55)

This is of the form
Jul) _ 7^ (n)e = Kz™ (56)

where
K = V~lWl[H - (1 - lc)U]. (57)

Therefore, we see that the convergence condition can be written in terms of the norm
N(K) of K. It is

N(K) < 1. (58)

Thus, if we can compute 'N(K), we can tell whether a given problem will converge. But
the norm N (K) can be written

N(K) = l.u.b.-1-p^. (59)
|x| 9*0 I X |

Since the matrix K is easily obtained, We can compute the norm N (K). To get a complete
computation of the norm, we must take a complete set of independent vectors x and
select the least upper bound as shown in (59).
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Fig. 2. The number of iterations N is plotted against the extrapolation parameter w for various values
of the parameter k. The value of k for each curve is indicated in the graph.

5. A parameter study on Laplace's equation. In the particular case of Laplace's
equation we have

B\~" = B'-1 = = Bi+tf = 1 (60)

and

B\ = -4. (61)
The two free parameters are k and co. The particular boundary value problem which we
considered consisted of a rectangular 10 X 10 mesh. The function 6 was taken to be
unity on all of the boundary. The first guess 6(1> was taken to be 10~3 at each internal
point. The solution was iterated until it agreed with the correct solution to within an
absolute error of less than one part in 105. The number N of iterations required for
this accuracy was recorded for each pair of parameters (k, u). A family of curves was
thereby obtained and plotted in Figure 2. For each value of k selected, N was plotted as
a function of co. Each curve of the family corresponds to a given k.

For k = 0 we have pure S. R. For w > 1 we have successive over relaxation, for
co < 1 we have successive under relaxation, and for u = 1 we have pure successive
relaxation. The point on the k = 0 curve of Figure 2 corresponding to the last case is
encircled. For k = 1 we have extrapolated Method I. The point on the k = 1 curve
corresponding to co = 1 corresponds to pure Method I and is also encircled. Curves
are plotted for various other values of k. As is apparent from Figure 2, we obtain better
convergence for higher values of k than in the conventional S. R. method which corre-
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sponds to k = 0. Judging from the shapes of the curves, it seems that the best value
for k lies anywhere from 1.2 to 1.4. With values of k in this region, the best value of co
occurs at the minimum of a given curve for the particular value of k used.
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