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1. Introduction. In previous papers by Milnes and Potts [1, 2] and Chow anH
Milnes [3] a method for numerical solution of partial differential equations has been
introduced and applied specifically to the Dirichlet problem for the unit circle. In a later
paper [4], Chow and Milnes applied the boundary contraction technique to the solution
of the Laplace's differential equation with boundary conditions of the Neumann and
mixed type. In addition, the Dirichlet problem was solved by developing a stable star
from the difference approximation to the Laplace's equation without utilizing the analytic
solution of the Laplace equation as given by the Poisson's integral. The boundary
contraction technique as based on the difference approximation to partial differential
equations was further applied by Chow and Milnes to a class of partial differential
equations of the hyperbolic-parabolic type [5]. There the stability of the difference star
was proved by examining the magnitude of the eigenvalues of the solution of the difference
equation and an error bound due to truncation is also given.

The purpose of this paper is to give a theoretical discussion of the boundary con-
traction method as applied to a general partial differential equation which includes the
Laplace's differential equation and the bi-harmonic equation as special cases. It is
divided into two parts.

In Part I we discuss the problem of convergence of the boundary contraction method
as the mesh size tends to zero. The divided difference equations which approximate the
given differential equations are first solved analytically (Sections 2 and 3), and the
solution is examined in the limit as the mesh size tends to zero (Section 4). It is proved
that in the limit the approximate solution of the difference equations approaches the
Fourier series expansion solution of the given partial differential equations.

In Part II we investigate, with special reference to the boundary contraction method,
the manner in which the attached boundary conditions may be prescribed, so that the
problem is properly posed; that is to say, the conditions are such that they imply the
existence of a unique and bounded solution for the problem. It is made apparent (Section
5) that the boundary conditions may not be prescribed in a haphazard fashion but must
satisfy very definite relations among themselves. These relationships are developed
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(Sections 6 and 7), and are presented in full detail with the principal conclusions pre-
sented in section 8. It is shown that in order to achieve a stable star the boundary condi-
tions must be prescribed in the right manner so that the problem is neither over-deter-
mined nor under-determined.

Part I. Convergence

2. Difference approximations. We consider the following linear partial, differential
equation of order p and homogeneous in r:

E £ = °> (2-1)f=i rv'a+s dr"'" dd*

where the coefficient aap are real and independent of the radius r and the polar angle 9.
The region of interest is a circle with center at r = 0, and since (2.1) is homogeneous in r,
there is no loss of generality by restricting this region to the unit circle r = 1. Let the
values of u(r, 6), together with its normal derivatives

du d\l d\i
dr ' dr2 ' dr''

be properly specified on the boundary of the circle r = 1; it is required to find the unique
and bounded solution u(r, 6) for r < 1.

Before we replace Eq. (2.1) by finite difference approximations and solve the difference
equation by the method of boundary contraction, it is convenient to introduce a polar
grid system consisting of a series of concentric circles C0 , Ci , C2 , • • • and N equally
spaced radial lines, so that the angle between each two consecutive radial lines is 2ir/N.
The concentric circles are not equally spaced, so that if the respective radii are
r0, rx , r2 , • • • we have

Ti+i = pr< , (i = 0, 1, 2, • • •), (2.2)

where p is a constant and r0 = 1. The values of u(r, 6) at r = r,- , 6 — 0, , will be de-
noted, for simplicity, by u(i, j), with the second index reduced modulo N, and increasing
in the counterclockwise sense, Fig. 1. Furthermore, let

(X — 1)(X — p) • • • (X — p" ') = Xa + s„,iX" 1 + s„,2Xa 2 + • • • + ,

<r„ = l+ 2 + 3+ -- -+(a-l)= a(g ~ 1} ,
(2.3)

\lni(m,ri) = u{m,n + 1),

Aau{m, n) = u(m, ri) + saAu{m — 1, n) + • • • + sa,au(m — a,n).

Replacing the derivatives in (2.1) by divided difference approximations, we have

d" „ 1
, i)dra~* dd" ~ r"'* Ad1

p—'( 1 - p)( 1 - p2) ••• (1 -
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r-> AO* p'-'( 1 - p)(l - p2) • • ■ (1 - p"-*)

•Aa_,(l - *Yu(i + a-p,j- ) (2.4B)

if /S is odd, (i = 0, 1, 2, ■ • • ; j = 0, 1, 2, • • • , (N — 1)). Then, substitution of (2.4)
into (2.1) yields

£ £ A., A„_,(l - *)«{u(t + a - 0, j - |) , u(i + a - 0, j - ^l1)} = 0, (2.5)

where the first or second member in the parenthesis is to be taken depending on whether
fi is even or odd, and

A  (~)°(a - 0)1  , .
p'-'(l - p)(1 - P2) • • • (1 - p"-') Ad"

Now, if 0 is even,

AaP Aa_s(l - ifu(i + a - 0, j -

= A u{i + a — 0, j — + So-/j.iu(* + a — 0 — 1, j — |)

+ • • • + sa_^,a_„M^, j — u(i + a — 0, j — | + 1^

+ + a — ^ — l,j — |+l)+ •■•+ sa-pia-0u(i, j — | + l) +
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+ (-) 0/2 \u(i + a — 0, j) + sa-f,iu(i + a — P — 1, j)

+ • • • + j)] + • • • + u(i + a — (3> i + |)

+ Sa-p.iW^ + a — /8 — 1, J + |) + ••• + Sa-f,a-fU\i, j +

= Aaf[l, "(J) , ,(-)* ' WJ

i + a — P, j — , u(i + a — p, j — | + 1^ , • • ■ ,

u(i + a - P, j), • • • , u[i + a - P, j +

+ Sa-/3.i + a — P — 1, j — , u(i + a — P — 1, j — §~^l)'" '

u{i + a — P — 1, j), • • • , u(i + a — P — l,j + + • • •

+ sa-^a-^u\^i, i ~ , u(i, j - | + l) , • • • , u(i, j), ■■■ , u(i, j + §)}]'

(i = 0,1,2, ••• ;j = 0,1,2, ••• ,(N - 1)), (2.7)
where {• , , • •} * denotes a column vector. Furthermore, if we define

U„ = |u[m, , u(m, + l) , • • • ,

u(m, N), u(m, 1), • • • , u[m, —| — l^j (2.8A)

when p is even and

Um = \u[m, y-) , u(m, -P g ^ , • • • ,

w(m, N), u(m, 1), ■ • • u[m, —(2.8B)

when p is odd, we can rewrite (2.7) as

Aap AoS(l - + a — p, j —

= Aa^0, ,0, 1, -(f) ,•••,(- 0/2 ,0, ••• 0-.)

12.
' [U.'+c-fl + Sa-^U i + a — /3 — 1 + • • • + Sa-jS.o-nU,],

(t = 0, 1,2, ••• ;j = 0, 1,2, ••• ,(JV - 1)),

(2.9)



1962] BOUNDARY CONTRACTION METHOD 213

where the row vector [0, • • • 0, 1, — (13/1), • • • , (/3//3), 0, • • •.] is such that there are
j + h(v ~ i®) or j + f (p — 13 — 1) zero elements preceding the element 1, depending on
whether p is even or odd. If /? is odd, we similarly obtain the following expression:

AaHJ(l — + a — 0, j — 13 ^

= Aafl[0, • • • , 0, 1, -(f) , ■ ■ ■ , (-)'(£) , 0, • - - o]

— 0 8a— 011 + a __ i * ""f" Sa — a— ,

(i = 0, 1,2, •• • ; j = 0, 1, 2, • • • , (N — 1)), (2.10)
where the row vector

0, ••• ,0,1, -(J), ••• ,(-)'($) ,0, ••• o]

is such that there are j + (p — (3 — l)/2 or j + (p — (3)/2 zero elements preceding the
element 1 depending on whether p is even or odd.

With the results (2.9) and (2.10) it is possible to write the difference approximation
to Eq. (2.1) as follows

5 £ 4^[0' ■••> °> *> -(?)>••• > » °» * * * °]
- [U,- + a_0 + Sa-fl.iUi+a-jS-.i + ••• + Sa-jS.o-flU,] = 0,

(i = 0, 1, 2, • • • ; j = 0, 1, 2, • • • , (N - 1)), (2.11)
where the row vector

[o, ••• ,0, 1, -(j), ••• ,(-)'(£) ,0, o]

is such that the number of zero elements preceding the element 1 will vary with j, p
and 13 as already described. Let j range over its possible set of values in (2.9) and (2.10),
i.e., let us apply the difference equation to each successive nodal point in order on a
circle, then we arrive at (N — 1) additional equations similar to (2.11). Due to the cyclic
property of the second index j of u(i, j), these equations can be compactly written in the
following matrix form:

£ t Aa,C,(0, ■ • • , 0, 1, -(f) , • • • , (-)'(*) , 0, • • • , o)

■[Uv+a-js + + • • • + sa_StC(_^U,] = 0, (2.12)

where

c„(o, ••• ,0,1, -(f) ,■■■ ,(-)'(£) ,o, • • • ,o)W
is an N X N circulant matrix of which the elements of the first row are

0, ••• ,0, 1, -(f) ,■■■ ,(-)"(?) ,0, ,0
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with — j8) or \(jp — 0 — 1) zeros preceding 1, according as p is even or odd when
,/3 is even, and J(p — /3 + 1) or §(p — /3) zeros preceding 1, according as p is even or odd
when f) is odd.

C„(o, • • • , 0, 1, -Q , • • • , (-)'(jj) , 0, • • • , o)

ft ... tJti0 1 ~(i) <->'$ 0

0

<->'(?)

<->t)
(2.13)

" . 1
• •• • *

1 • • o
0 •

0 ... 0 1 -Q ... (-/(£) 0 ... 0
3. Solution of the difference equations. We now attempt to obtain the general

solution of the approximate difference equations in matrix form (2.12), without recourse
to boundary conditions. Since the stability of computation will depend on the bounded-
iiess of the solution as r —> 0, the question of how to specify the boundary conditions
properly in order to ensure a bounded solution will be left for further consideration in
Part II of this paper.

Let us try a solution of the following form assuming TJ0 0:

U, = X'Uo , « = 0,1,2, -..), (3.1)
where X is an iV X N circulant. Substitution of (3.1) into Equation (2.12) results in the
following expression:

£ £ ' ' °« l> ~(l) ' " ' ' (_)"(/?) ' °' ''' ' °)
.[X«—f + + • • • + «„_,.<,-„X<]Ufl = 0. (3.2)

Now consider the following complete ortho-normal set of vectors Xo , 20 > > 2Civ-i
in N dimensional space:

2C,. = iV~1/2{l, co*', co2<, • • • , cow-,)<}*, (i = 0, 1, 2, • • - , (N - 1)), (3.3)

exp (^), < = (-l)1/2, (3.4)



1962] BOUNDARY CONTRACTION METHOD 215

and resolve U0 with respect to this basis:

U0 = Z Mo Xi • (3-5)
J-0

Substitution of (3.5) into (3.2) gives

Z Z Z A^clo, • • ■ o, i, -(f), • • • , (-)'(£), o, • • • , o)
+ • • • + s^.^X'hi = 0. (3.6)

It is known that an N X N circulant matrix C(a0 , ai , • • • , aN-,) has N eigenvectors
given by (3.3) which are independent of the elements of the matrix. The corresponding
eigenvalues are, [6]:

xf = Z akJ\ (j = 0, 1, 2, • • • , (N - 1)). (3.7)
Jfe-0

We denote the N eigenvalues of X by £0 , £i , • • • , £n- i corresponding to
2Co, 2Ci , • • ■ , X,n-i . Following the details of the circulant

c,(o, ■■■ ,0,1, -(f), 0,... ,o)
already given in Section 2, we have if /3 is even

<7,(0, • • • , 0, 1, -(f) , • • • , (-)'(g) , 0, - - - , o)x,
  i(p—fl)/2/1   %r= CO (1 — «') 2C/ when p is even,

(1 — when p is odd,
(3-8)

and if is odd

€„{o, ■ ■ ■ , 0, 1, -(f) , • • • , (-)'(J) ,.0, ..• , o)Xl
= COi (p—/J+l)/2 (1 — co')*2Ci when p is even,

= w't" ")/2(l — co')?2Ci when p is odd. (3.9)

Using these results, we reduce the matrix equation (3.6) to an algebraic equation in £,■
when p is even

a = 0 /3 = 0 j — 0

'(?? " + + ••• + Sa_^,a_fl)x,- = 0, (3.10)

and it follows immediately from (3.10) by making use of (2.3) that

Z Z iUG*"'-"", «"'-'+I>/1)(i - «')'(& - i)(«, - p) • • • (I,- - p"-"-1) = 0,
a-0 /9 = 0

0 = 0, 1, 2, ••• , (N — 1)), (3.11)
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where the first or second member in the parenthesis is to be taken according as /3 is
even or odd. Clearly this expression is also true for odd p. This equation is of p-th degree
in £,■ : let the p roots be

,€« , ••• 0' = 0, 1,2, ••• ,(2V - 1)). (3.12)
Corresponding to the p eigenvalues we have p circulants

X, ,X2 , ••• ,X, (3.13)

such that

Xk = Q diag (£oji , £ik , • • • , i)Q> (k = 1,2, • • • , p), (3.14)
and

~1 1 1 ••• 1

Q - x"

2 N-l
CO CO CO

1 2 4 2 (AT—1)I CO CO CO

1 N-l 2(N-1) (N-l)a
.1 CO CO CO

(3.15)

The general solution of the difference equations in matrix form (2.12) can therefore
be expressed as

U, = (S.X; + S2X' + • • • + SPX')U0 , (t = 0, 1, 2, • • •), (3.16)

where , S2 , • • • , are circulants involving arbitrary constants which are to be
determined by given boundary data:

&k — C(eki , e*2 , • • • , i), (k = 1,2, • • • , p). (3.17)

If we put i = 0 in (3.16) we have

Si + S2 + • • • + £„ = I, (3.18)

I being the identity matrix. Thus we see Si , S2 , • • • , S„ are not entirely independent,
the number of arbitrary constants being N(p — 1). On the other hand, since U0 is arbi-
trary, the combined number of arbitrary constants in the solution as given by (3.16) is Np.

Since circulant matrices commute in multiplication, it is easy to see that the solution
given by Equation (3.16) satisfies Equation (2.12); moreover, it involves Np arbitrary
constants, so it is the general solution.

4. Comparison with Fourier series expansion solution. At this point it is appropriate
to investigate the solution found in the previous paragraph as given by (3.16) in more
detail; in particular, it is a matter of interest to examine how the solution of the difference
equation passes over to the analytic solution of the differential equation in the limit as
the mesh size tends to zero.

We first resolve U0 with respect to the basis Xo , 2Ci > *" * > 2Cv-i as given by (3.5).
The coefficients of the expansion can be found by taking the inner product, thus

Mo; = (U0 , fa), (4.1)
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where jj, is the complex conjugate of 2c, 0 = 0, 1, 2, • ■ • , (N — 1)). Substituting Equa-
tion (3.5) into Equation (3.16), we get

u, = £ noj&xi + s2x< + • • • + e„x;)k,
7=0

— 22 + X)2£2 + • • • + X,•„£•„)£,• > = 0, 1,2, •*•)> (4-2)

where \jk is an eigenvalue of &h, (j = 0, 1, 2, • • • , (N — 1)). If the components of the
vector Uj are u,0 ,u,:1 , • - - , u,tN-i , then the (s + l)th component of the above equation
is

w,', = N 1/2 22 Moj (Xjifyx + X,-2£,*2 + • • ■ + X,p£,'„)&>" ,
3=0

(* = 0,1,2, ■••;« = 0,1,2, ••• ,(tf - 1)). (4.3)

If iV is odd, then,
((2V—1)/2 iV-l \

£ + £ ]Mo;(X,ii;;i + X,-2i;'-2 + " " " + X
i-o / = (Jv+1 )/2/

= iV I/2/i00(^01^01 + X02£o2 + • • ■ + X0p£oi>)

(JV-D/2
+ iV 1/2 XI Mo,(X,l£'l + X,-2^2 + • • • +

3=1

+ iV 1/2 2 Mo,w-/(Xw-y.ilJr-i.i + ^N-i.^N-i.2 + ••• + \w-i,P&-i.v)03 ">
(N-1)/2z

3=1

(» = 0, 1, 2, • • • ; s = 0, 1, 2, • • • , (2V - 1)). (4.4)

Since co = exp (2-itl/N), it follows, if we write 6, = 2irs/N,

Uu = C0l£oi + C02?02 + • • • + C0„foj>

W-1J/2

+ X) feilii + c32?,*2 + • ■ • + cip&p) exp (j08i)
3=1

W-l)/2

+ ^ * (cn— j,x^N~j,i ~f~ ,;.v -3r2sA"--i,2 H- * ■ * ~f" CN—j,p%N—j,p) exp ( jdst), (4.5)
3=1

where

ci4 = iV"1/2(U0 , 2C,)XJfc ,

^N~i,k (Uo j 1£.N-i)^N—i ,k

= iV~1/2(Uo , x,)Xw_,.» , (i = 1,2, ••• , i(AT - 1); A; = 1,2, ••• ,p). (4.6)

Due to the circulant nature of the real matrices Sj , S2 , • • • , S„ , we have X,* = XN-itl .
Thus if U0 is real, then

Cjk = CN-j,k 1 (j = 1) 2, • • ■ , %{N — 1); k = 1, 2, • • • , p). (4.7)
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If N is even, an expression similar to (4.5) exists. Now in Equation (4.5), take only the
first n harmonics such that n « §(iV — 1):

Uit = Coi&i + C02£o2 + • • • + CopJop
n

+ fol£l + C/2&2 + • • • + Cfp&p) exp (jdtl)
7-1

n

+ X/ fov-l + CN-j,2^N-i,2 + • • • + CM-i,v^N-i,v) exp { — jd.l)
J-l

+ Rn, (4.8)

so that
<W-l>/2

R„ = 21 (cyitfi + c,-2?,-2 + • • • + CjplJp) exp O'0,t)
j — n+1

(tf-l)/2

+ ^ ' (@N— i, l^N— i 11 + @N— i, 2^N— i. 2 ~f~ * * * ~f~ ̂ N—i,p^N—i,v) 6Xp ( (4»9)
j — n +1

With c,-t , cA-_;,4 given by (4.6) we can write

Cik = ^ X>oi exp (4-10)

Using Abel's transformation [7] we rewrite (4.10) as

Xfiter _ A ( 2tjli\ . ^ / 2irjh\
Cik = YXfi ^ ~ Uo-t+1] f- exp \—w) + rr'o U°'N~1 exp \—N~)

-h* y* r« - « 1 1 ~ exp [-2tj'(A; + l)yW] ,. „
- 2. Lwo, Wo.t+iJ x _ exp [_27r;-t/iV] ' 0 * 0)"

after making use of the fact that X/T-o exP (—2irjli/N) = 0. Thus

X,t 2t  N r -. ( 2irjki\ . .
e,t ~ AT2 exp (2irji/N) - 1 £ 2x [w°'*+1 Mot] exp V Ar /' ( )

If we define

Mo" = [wo.i+i - Moi], (4.12)

\<U _  2xX,&  /.
iV[exp (2rji/N) - 1] ' 1 '

we then have

X,"' V-J (i) ( 2irjli\ . .
= ~y fa u°> exP \—n) > (4-14)

which is similar to (4.10). Repeating the process v times gives

X't' <>.) / 2irjh\ .clt = faUoi exp ̂  -fi-J , (4.15)
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where

C - {;iV[exp (2trji/N) — 1]
2,r v A,» , (4.16)

and Uo'i corresponds to the forward difference approximation to the vth derivative of
u( 1, 0) with respect to 6 for 6 = 2-rrl/N. Now as N approaches infinity it follows from
(4.16) that A,-*1 approaches A,*/j'i and ul0"i will approach d"u(r, d)/dO" for r = 1, d =
2tI/N. Assuming the boundedness of d"u(r, 6)/dd" we obtain the following inequality:

Cjk | ^ max i^U(r'6) i = 0, 1, 2,
[k = 1, 2, 3,

(4.17)

Next we show that | \ik |, (j — 0, 1, 2, • • • ; k — 1, 2, 3, • • • , p) remain bounded as
N —> oo and p —> 1. From Equation (4.3)

Ui, = N'1/2 X) Mo,(A,l£,'l + X,-2?f2 + ••■ + XjpUpV" ,
J'-O

Ci = 0, 1, 2, • • • ;s = 0, 1, 2, • • • , (N - 1)). (4.18)

With s = 0, 1, 2, • ■ • , (N — 1) we multiply the resulting equations taken in order by
1, &Tm, co~2™, • • • , 03~lN~"m> (m = o. 1, 2, • • • , (N — 1)) and add. This results

X] = N1/2H0m(Xml£ml + Xm2|m2 + * * * + Amp?Lp),
8 = 0

(m = 0, 1,2, ••• ,(N - 1)). (4.19)

And if we replace i in (4.19) by 0, i, 2i, ■ • • , (p — 1 )i we obtain the following matrix
equation, remembering that

Hon, = (U0 , JCJ = N~U2 £ Uo0-,

1 1 1 • • • 1

£.1 £ m3 " *

<■2 i t.2 i b2 i « # . *
Sml Sm2 Sm3 * " * Smp

v(p-l)» w(p—l)t o(p-l)i _ «-(p—1)»
_Sml Sw2 S w3 * Snip —I

^ml

^r»3

.^mpJ

2

, — ma
U0a0)

8 = 0

N-1Z — ma
uiau

8=0

N-l (4.20)

23
3 = 0

(m = 0, 1,2, ••• ,(2V - 1)).

If at the i-th step the radius of the circle is contracted to 5 then by putting

= P'\ (4.21)



220 TSE-SUN CHOW AND HAROLD WILLIS MILNES [Vol. XX, No. 3

we have = p"'* = 8''". If we keep 8 fixed and let p —> 1 and N —* <», Equation (4.20)
becomes

1 1 1 • ■ ■ 1
grm, ___

52Tml 5~Tm 3 • • • S2T

j*(p-l)rml ^(p-1) Tm„ g(p-l)r„

K,
^m2

^m3

1
1*2 x

Jn 'Jo
v)e"m,p d<p

(m = 0, 1, 2, •••)• (4.22)

/» 2 x

/ m(1 ,
J 0

f u(d, <p)e~im,f d<p
Jo

«2t

/ u(82, <p)e Lmv dtp
J 0

f u(8"~', <p)e~imv d<p
-J 0

Now rml , r„2 , • • • , Tm„ are all different since by our assumption £ml , |„2 , • • • , are
all different, so that the matrix on the left-hand side of (4.22) is non-singular and
Aml , Xm2 , • • • , \mp are bounded.

The boundedness of \jk in the limit ensures cik to be bounded, from (4.17). We have
already seen that = p"'k = <5T|' which is bounded. Therefore, as given by (4.9)
R„ is of the order of XX»+i i" as N —> co and p —* 1, and can be made arbitrarily small
by increasing n provided v 2: 2.

Now refer to (4.8) and consider the first n harmonics of uia , i.e.,

«* = uit — Rn

= Coil 01 + C02I 02 ~t~ * * * ~l~ CojJtop

+ ib + C/2^/2 + • * • +
7=1

n

+ S (°N-i.i&f-i.1 + cN-j,2^N-i,2 + ••• + cK-j,.XN-j,^)e (4.23)
j = 1

We recall , £/2, ■ ■ • , are the p roots of the equation (3.11). If we substitute Aafj
as given by Equation (2.6) into (3.11) we get

y->  ( —)°aa^(a — /?)! Yi - co-y /1 - «'Y 1 /2/1
,W/2i AS/ ' V/2i A0/ w J

'd - P)(i - p2)... (i - „<■-')

■d - m, - P) ■■■ (& - p*-"-1) = 0, a = 0,1,2,••■,»), (4.24)

after cancelling out the factor w'®/2, where the first or the second member in the bracket
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is to be taken according as ft is even or odd. Since co = exp (2tl/N) and Ad = 2w/N
it follows by decreasing A9 indefinitely,

lim = lim (-i)"(^sin = (-ji)", (j = 0, 1, 2, • ■ • , n). (4.25)

Also, since liuLV_„ co'/2 = 1, Equation (4.24) is reduced to the following equation as
N —» oo :

V (_)°( —~ ft)! , X a-S-K n2. 2.  77, 57   (f/ - l)(i/ - p) •••«,-- p ) = o,
a-0 0-0 p "(1 - p)(l ~ P ) • • • (1 - P ")

(j = o, 1,2, ••• ,»). (4.26)

We now shrink the mesh size radially by letting p —» 1. As before, putting

f/ = P0' = 0, 1,2, ••• ,»), (4.27)
we have:

lim -5- <*' ~ <*< ~
p- p'-' (1 - p)U - p2) ••• (1 - p-")

= lim lim 7-—P5 • • • lim ~ p" [ '
p-*l ^ P p—»1 1 P p~»l 1 — pa

_ Jj_ Tj — 1 t,- — (a — ft — 1)
-1 -2 -(a - ft)

= t,-(t,- — 1) • • • (t,- — a + ft + 1)
(-)-'(a - ft)! (4.28)

Combining Equations (4.26) and (4.28) we find in the limit as N —> 00 and then in the
limit as p —> 1, r, satisfies the following equation:

iz it, a«f>T>(r> — 1) • • • (r; — oc + ft + 1)0'0" = 0, (j = 0, 1, 2, • • • , n). (4.29)
a =0 /3 = 0

We write t_,- in place of tn-,- as N —> » (similarly 1, (?_,,* for fw-/,* , GV-,,0 and
find in like manner as 2V —> 00 and p —» 1 r_, satisfies the equation:

iz s o«ht_,-(t_, - 1) • • • (r_; — a + ft + 1)(—;<.)" = 0, 0' = 0, 1, 2, ■ • • , n). (4.30)
a = 0 /3 = 0

Clearly from (4.29) and (4.30)

r,t = f-,-,k , (j = 1, 2, • • • ; k = 1, 2, • • • , p), (4.31)

and since = pT",

= !-/.», 0' = 1,2, ••• ;As = 1,2, ••• ,p). (4.32)
We put £ik = pr", p' = 5, 5 being kept fixed and recall w,, is the (s + l)th component
of U, i.e., u(i, — p/2 + s) or u(i, — (p + l)/2 + s) depending on p is even or odd according
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(2.8). In the limit as N —* °° both u(i, — p/2 + s) and u(i, — (p + l)/2 + s) approach
u(8, 6,) then Equation (4.23) becomes
w*(5i0.) = Coi 5To' + Cq2 St" + • • • + c0j) ST"

+ Z (fin ^T" + c>2 8r" + ''' + civ exP (jO.i)
i-l

+ X) (c-j.i 5T_''1 + c_,-,2 8T~''' + ••• + c_f,p 8t~''p) exp ( — jd,i). (4.33)
i-l

Now in the given differential equation (2.1), if we seek a solution in the form r"' exp (jdi)
or r°" exp (—jdi) we must have, by substituting them into the differential equation,

£ E a.rfa, - 1) • • • (<r, - a + P + 1 )(ji)" = 0, (j = 0, 1, 2, • • •), (4.34)
a = 0 0 = 0

EEm;W-1)-W-« + H1)B/ = 0, (j = 0,1,2, ..•). (4.35)
a-0 0=0

Comparing (4.29) with (4.34) and (4.30) with (4.35) we find

Ti = ov , T-i = a'i , (j = 0, 1, 2, • • •), (4.36)

and Equation (4.36) indeed expresses the fact that the first n harmonics obtained by
the boundary contraction method converge in the limit to the first n harmonics of the
Fourier series expansion.

Part II Boundary Conditions

5. Computation stability. It has already been demonstrated that the general
solution of the difference equation (2.11) as given by (3.16) involves Np arbitrary con-
stants. These constants must be determined by the boundary conditions associated with
the differential equation in such a way that a unique and bounded solution is defined in
the region under consideration. In the following paragraphs it will be shown that this
condition imposes a restraint upon the type of boundary conditions that may be specified.

From (3.13), we see Xx , X2, • ■ • , Xv are diagonalized under the unitary transforma-
tion Q. Let the eigenvalues of the, circulants Sj , S2 , • • • , £„ be denoted by
Xj&O' = 0, 1, 2, • • • , (N — ); k = 1, 2, • • • , p) then the circulant property of these
matrices assures us:

£* = Q diag (Xot , Ai* , • • • , Ajy_i ,k)Q- (5.1)

Substitution of (3.14) and (5.1) into (3.16) gives:

Ui = £ diag (£0* j , • • • , Ijv-i.OQ} Ho
k-1

V

— Q £ diag (A0i£o* , , • • • , Aj\r-1,*£y-i,*)OUo . (5.2)
k-l

It follows, therefore, that in order that the computation be stable, the solution as giVen
by (5.2) should be bounded interior to the unit circle, i.e.,
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*/» I ̂  1, (5.3)j = 0, 1,2, ••• ,(2V — 1) .
Jc = 1,2,3, ••• ,p

Some differential equations, when approximated by certain difference schemes, do
yield eigenvalues satisfying (5.3), [5]. However, this is in general not true, and to ensure
computational stability it is necessary to adjust the arbitrary matrices , • • • S„
so that for those £'*'s which are larger than unity in absolute value, the corresponding
Xjk's are zero. This reduces the arbitrariness of the matrices &i , , ■ • • , and since
they are determined by the given boundary conditions, this in turn restricts the arbi-
trariness of the boundary conditions. We proceed to deduce the conditions that the
boundary data have to satisfy so that the solution will be bounded within the unit circle
and computation will be stable as r —> 0.

Referring back to (4.20) we put i = 1 and obtain

1 1 1 ••• 1

I?m2 £m3 S mp

1 £m2 3 * * *

^ml

^m2

^m3

f-p-i yp-i yp-i # t # \
_sml S"»2 sm3 * Smp —J L'*mp_

AT-1

Z) Wo
s = 0

N-l

S Ml.

X) uo.-

3 = 0

N-1
Z U2.u-m'

— maWp-i.»w

(to = 0,1, 2, • • • , (AT — 1)). (5.4)

Equation (5.4) expresses analytically the fact that eigenvalues of S, , S2 , • • • £„ i.e.,
\mk(m = 0, 1, 2, • • • , (N — 1); k = 1, 2, 3, • • • , p) are determined by the boundary
data on p consecutive circles: U0,Ux,Ua, • • • , Up_1 . To ensure the solution to remain
bounded in the region considered so that computation will be stable, we must discard
those £rai's for which the absolute values are larger than unity. Suppose that we arrange
Sm*(TO = 0, i, 2, • • • , (N — 1); k = 1, 2, 3, • • • , p) according to magnitude such that

I €-i I ̂  1. I I £ 1, , I €«.„ I £ 1
and

I I > 1, I | > 1, ••• , | U I > 1, (to = 0, 1, 2, • • • , (iV — 1)), (5.5)
then, we must discard £m,am+i , , • • • , £rap by putting

+ l ^m,aa»+2 * ^mp (5.6)
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This results

1 1 1 1

£ml £m 2 S "i .'i *

£l £3 ••• I

mgm

2
ma m

yp-i yp-i fcP-1 tp_1-Sml Sm2 sm3 * s,

^m2

^m3

mflmJ L^m9mJ

N-l
— ms

2 ^osw

s = 0

N-l

«1.'
8-0

JV-l

£ «2.«~"

£ WB-1,SCO

(to = 0, 1, 2, • ■ • , (N — 1)). (5.7)

In the matrix equation (5.7) Xml , Xm2 , • • • , X,„,m can be eliminated by solving the first
qm equations for , X„2 , • • • , Xm<,m and substituting the result into the remaining
p — qm equations. This is possible if |rai , £m2 , ■ • • , are all different. Assuming this
to be true, we obtain the eliminant as follows:

yQm 5-<2 m yQm ... tQ
Sml Sm2 Sm3 * " * S®mQm

t.flm+1 i.(I)ii + l fcflw + 1 ^ ^ ^ i.qm + 1
Sml Sm2 Sm3 * * * smflm

£<Zm+2 £<Zm + 2 vflm + 2 «-<7m + 2
Sml Sm2 Sm3 " * * Smom

fp-1 £P-1 >P~1 # # # fp_1ml sm2 Sm3 " * * Kmqm _

1 1 1 ••• 1

^ml £m2 £m3 * * * ^mqm

t2 t2 t2 ... fc2Sml Sm2 Sm3 S mQm

y v s(

JV-1Z-mŝ
1SC0

s = 0

AT-1

X) U2S0J~
s = 0

yQm — 1 yQm — 1 vflm~l ... £•? m ~ 1
Sml Sm2 Sm3 ... Sm<zm _

— ms
uqmSoi

8=0

N-l
\ 1 —ms
/ -« ^dm + 1,8^
s = 0

V-l

£

N-l

to + 2 , s'

(to = 0, 1,2, ••• ,(JV - 1)) (5.8)

or = Wm2 , (to = 0, 1, 2, • ■ • ,(N - 1)), (5.9)

where the symbols have the obvious meaning.
6. Evaluation of To find i^,1 we consider the following expression in 17:
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\ A  (,V £ml)(?7 ^2) * * * (^7 —l)(.V £m,f+l) * * * ("*7 £mqm)  £»   »

I-l ftm/ — ?»1 )ftm/ — £*>2) ' ' ' ftm/ — £m,/-l)ftmj ~ £m,/ + l) ' ' ' ftm/ ~ £maJ "" ^ '

(t = 0, 1,2, ••• , q„ - l;m = 0, 1,2, ••• ,N — 1). (6.1)
Equation (6.1) is clearly satisfied by qm different values of r? : , £m2 , • • • , £m0m but it
is at most of the degree qm — 1 in 17; hence it must be an identity. Let

(v — £ml)(>? - ^2) • • • (17 - £m,i-l)(v — £m,/ +1) • • • (17 — £m<,J

= J?"" ' + tmiiv""' 2 + tmi2VQm 3 + , (6.2)

ftm 7 £ml)ftm/ £m2) ft mi %m,j-1 )ft m; ^m.i' + l) * * * (^mj £rnqm)
Q m

= II' ftm, - {„.)• (6.3)
e = 1

Then by substituting (6.2) and (6.3) into (6.1), and comparing the coefficients of
77°, j?1, 7j2, • • • , J?5"-1, we obtain

<2 m 1 yi
Z^mj ,Qm — Ism;   r- 5'"° >

II' ft-/- £-)
e = 1

Qm 1 yi
E^mj ,Qm — 2*amj   5.

<t. _ 5il >
"l II' ft-/ - £..)

« = 1

^ £* •\ ^ Smj

(6.4)

IT ft./ - {».)
= 5.'.a

i 0, 1, 2, • • • , 1,

m = 0, 1, 2, • • • , 2V — 1

where 5i0, 5it , • • • are the Kronecker deltas. From the relation (6.4) we conclude
1 1 1 1

£™l Zm2 ? m3 " * * £mqm

t2 t2 t2 ... t2
S ml Sm2 Sm3 smqm

yQm~'1 yQm~ 1 y<lm~ 1 yQm~ 1
—Sml Sm2 Sm3 * * " Sm<2m -

1
it ft-i - ?».) it ft-! -!-) n' ftm. - ^.) ' n' ft- - £.«)

< e e t

 ^m2 , qm —1  ^w2 . qm—2   ^m2 . gin~3  ^ 1 

II' ftm2 — £m<) II' ftm2 ~ £m<) II ftm2 ~ £m<) H' ftm2 ~ £m«)
tee €

^m3.0m — 1 ^m3.flm-2 ^m3.0m— 3 1

H' ftm3 ~ £m<) H' ftm3 — fm.) H' ftm3 ~ £m<) II' ft»3 ~ $«)

^mqm . gm —3

ir ft— - *-.) n' ft— - f-o n' ft— - *..) "' n' ft— - ««)
e e e e

(m = 0,1,2, ••• ,(g„ - 1)). (6.5)
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7. Evaluation of It remains to evaluate the product To this end we
consider the following expression:

F(v)
 (^7 ^2) * * * 0? £m,i-l)(.V £m,j +1) * £mQm)  >i   i

~ - U)&»,■ ~ U) • • • ({«/ ~ - €-.<+0 • • • (t-i - fc..J ' '
i = qm , qm + 1, ■ ■ ■ , v - 1

m = 0, 1, 2, • • • , iV — 1
(7.1)

Clearly F(£ml) = F(£m2) = • • • = F(£ma J = 0 and since F(r;) is of degree equal to or
higher than qm in r), it is divisible by the factor

(V £ml)(?7 ^tn2) * (.V

= T)"m + 1 + tm2ri'"n 2 + ■ • • + tm„m , say. (7.2)

We can therefore write

 ([v ^ml)(^? fcm?) * * * (.V £m.j—1)(^7 £m,i +1) * * * (^7 £mqm)  £»     •

(U- - U)(U- - |m2) • • • (£., - i)(fe-f - f-.l+l) • • • (£»/ - {—) _

+ ('?"" + 1 + ^2'?"'" 2 + • • • + tmQm)(Cim0 + Cim It]

i = qm , qm + 1, • • • , V - 1
+ + ••• + Cim,i-Qmt)x Qm),

and by using (7.2) and (7.3),

m = 0, 1, 2, • • • , N — 1
(7.3)

Y< V"m 1 + tmilV"m 2 + ^m,-2l?°" 3 + " ' ' + tmi ,gm —1 yi _ it I A
/ -< smj V \Pim,i — Qm ' -U

IT (U, - U
e = 1

~f" V t —flm ~f"

mTpim, i — Qm i — Qm — 1 c t'm , t — a m — 2)

I ^7 (^msCim, i — Qm , » — flm — 1 • i— Qm — 2 ^im.t'-ffn-s)

+

+ '?2(^ma„C.m2 + t TTl, Qm— lCimi + i Qm~ vfiimo)

I V^mQnfiitnl "I- . am — l^imo)

+ tmamcimo . (7.4)

Comparing the coefficients of rj°, tj1, t;2, • • • , r;0™-1 on both sides of (7.4) we obtain the
following expressions:

Qm j fc*
\ A "mj ,Qm~lsmf •
^4 I {' (y   £ \ VrnQmyimO )
J-l J. J. \V»J Sme/

Cm f y*
,Qm-2hmi   , . , T(n , < \

I T' /«. t. \ *m,qm — l^t'mO ~t~ VmQmyiml-L \Qm ~T~ *■))
7 = 1 11 \Smj Smt)
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Qm t fc*
23 "" = tm,Qm-i.cino + + 1) + tmQmcimJ(qm + 2),
J-l 11 \sm; sme/

6

dm «-*'

TTWr^ZTt-^ = + tmzCimJ(qm + 1) + • • • + tmamcim,„m-il(2qm — 1),
j-i 11 Ism/

* = <7m , + l, • • • , V - 1

m = 0, 1, 2, • • • , N — 1
(7.5)

where
/(x) = 1, i ^ x,

= 0, z < £. (7.6)
Similarly, by equating coefficients of 17*, • • • , v" we obtain the following set of
equations:

Ci+ 1=0, p - 1 i ^ qm ,

tmlCim.i+ c,m,= 0, p-l^i^gm+l,

am m, i — am — 1 "I" _ i — qm — 2 0, P 1 = Z ^ "I" 2,

tmajrfiim.i — Qm qm — l^im, i — am — 1

~f~ tmlCim, i — 2flm + l ~f" Cim, i~2am ~~ 0, P 1 = i = 2^m ,
(7.7)

Thus, for i = qm , only the first equation is valid; for i = qm+ 1, the first two equations
are valid, etc.

From Equations (6.5) with (7.5) we obtain

^manfiammO J ^m.am-l^OmmO >

^ffn^ii + lpinO J , Qm —l^am +1, mO

^mQm^Qm +2 , mO > Am + 2,m0 "I" ^rnQm^Qm +2 ,ml )\If d)"1 =1 m ^ m

—tmqmCj>—l ,mO j ^mam^p-l,rnO "1" ^mqnfip— ltml j

,qm-2^qmm0 )

, qm-2^qm + l ,m0 ~f~ , qm ~ l^flm +1 . ml >

, Qm—2^Qm+2 ,m0 ~~f~ ̂  l^fl» + 2,ml ~f~ ^mqnfiq B + 2. m2 *

tm.Qm-zCp-l ,m0 + tm.Qm- iCp-x , ml ^tnqnfivl.m2 y

) ^m2^qnm0 ) ^ml^qmmO

y tm2pqn +1,mO I ^m3^8« + l,ml > ^ml^a«* + l.m0 Hl~~ 2Ca- + l , ml

j ^mZ^Qm + 2 ,m0 "H" ̂ m3^qm + 2 ,ml ~f~ tm4pqm + 2 ,m2 > ^mlC<z» + 2 .mO ~f~ ^m2^qm + 2 ,ml "4" ^m3^<7« + 2,m2
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^Qmm 0 0   0

0   0

^flm+2i"i0 + 2, ml ^dm + 2,w2 ^ ^

0

-Cv— l.mO Cp— 1 ,ml Cp_ 1 ,m2 Cp— 1 , m ,p— Qm — 1

tmqm — 1 ^m,qm—2   ^m3 ^m2 1

^mom . om — 1   ^m4 ^m3 ^rr,"m<Jm m. Qm — 1 ^to4 *m3 ^2

^mqm '   ^m5 ^m3

0
(7.8)

— 0    0 ... tm tp—qm — J tm,p—q

On the other hand, by assigning i = qm , gm + 1, qm + 2, • • • , p — 1 in Equation
(7.7) we can write the resulting equations in the following matrix form:

^QmmO 0   0

Cflm + l.mO + ^   ^

Cgm + 2,m0 CQm+2 ,ml Cqm+2,m2 0 * 0

•0

-Cp—l,m0   Cp—i ,m ,p—Qm — l—

1 0

Li 1 0
tm2 tm\ 1

tm3 Ll

: : : 0
-tm ,p-qm-1 tm ,v-qm— 2 3 ' ' ' ^ml 1-

-1 0  0

0 -1

0

■0 —1. (7.9)



1962] BOUNDARY CONTRACTION METHOD 229

It follows from Equations (7.8) and (7.9) by eliminating the matrix involving c's that

1 0  0

Li 1 0
/m 2 /ml 1

tm3 tml

,p— Qm — 1 — 2 /m.p— Qm— 3 * /ml 1 —

^tnQm 1     tm2 tml

0 tmqm     tm3 /m2

^m^;1 = (-)

= (-)o;&ml, (7.io)

— 0* ........ -Q /mom , p — Q

with obvious meanings of Qml and 0m2 .
8. Conclusions. Substitution of Equation (7.10) into Equation (5.9) gives the

following result:

0„2^mlW„i = Wm2 ,

^mlWml + ^m2Wm2 = 0,

[0 ml j ^2] "Wml"

lW.,,
0,

i.e.,

fimWm = 0, (m = 0, 1,2, ••• ,(N - 1)), (8.1)

where Qm is a (p — qm) X p matrix formed by the first p — qm rows of the p X p
circulant: C(<„a„ , <m.a„_i , • • • , tm2 , tml , 1, 0 • • -0).

/mo m , Qm~l ......... tm2 /ml 1 0 ...........0

0  La tm2 tml 1 0

Om =

0
L 0 0  tm 3 /„2 /„i 1. (8.2)
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and
~N-1

8 = 0

N— 1

w =* * m

X] mi»w
8 = 0

V-l

y, w2 Ar
(8.3)

JV-l

- «-0

Equation (8.1) is the bounded part of the solution of the difference equations which
approximate Equation (2.1); it expresses analytically the fact that if the solution u(r, 6)
is bounded in the unit circle, the values of u(r, 6) on any p consecutive circles
Ca , Ca+1 , Ca+2 , • • ■ , C<«+.>-i have to satisfy the relations expressed by (8.1). The total
number of these relations is (p — g0) + (p — <?i) + • • • + (p — Qn-i) =
Np — (g0 + ?i + • • ■ + ?.v-i)- Therefore, if the solution is to remain bounded and
computation to be stable as r —■» 0, the given data on the circles C0 , , C2 , • • • , Cv-i
have to satisfy these relations. Since there are Np points C0 , C\ , C2 , • • • , C„_, , the
boundary data cannot be specified at will: in fact, only q0 + Qi + 32 + • • • + Qn-i
points can be assigned arbitrary values.
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