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NOTE ON GREEN’S FUNCTION IN ANISOTROPIC ELASTICITY*

MARTIN C. GUTZWILLER**

Shell Development Company, Exploration and Production
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Abstract. Green’s function for an elastic, anisotropic medium is constructed with
the help of the method used by Courant and Hilbert in the study of light propagation
through an anisotropic dielectric. The amplitudes of the arrivals corresponding to each
wave surface are expressed as functions of the curvature of the normal surfaces. Multi-
valued solutions are expressed as integrals over the dislocation lines, whose motion is
assumed to be known, but otherwise arbitrary. The formulae are worked out in detail
for the isotropic medium.

Introduction. The purpose of this note is to put on record a number of formulae
which have been derived with the help of Green’s function for an anisotropic elastic
medium. Green'’s function can be constructed formally by a method which is described
by Courant and Hilbert [1]. The resulting expression can be used directly to investigate
its main singularities, called the arrivals. Also Green’s integral theorem yields solutions
of the equations of elasticity which can be interpreted as describing dislocations in
arbitrary motion.

Since the emphasis of the present work is on finding formulae for the arrivals and
the multivalued displacements, no particular effort has been made to establish general,
but still sufficient conditions for the validity of these results. For the derivation of
Green's function a reference to the more recent work on distributions, e.g. Lighthill [2],
may be sufficient. For the construction of multivalued displacements the existence of
the necessary continuity in the dislocation shapes and motions has been tacitly assumed.
In order to illustrate the general procedure, the case of an isotropic medium has been
discussed in more detail. In particular it is shown in which manner the multivaluedness
arises in the integral representation of the dislocation.

1. Symbols and basic formulae. Greek indices run from 0 to 3. Latin indices run
from 1 to 3. If an index occurs twice in a product, it has to be summed. Space coordinates
are (z, , T, , 23) or (z, y, 2), the time coordinate is x, or {. The displacement is given by
a vector (u, , us , us) or (v, , v, , v3), the body forces by a vector p(f, , f; , fs)
or p(g: , g» , gs), where the density p of the elastic medium has been inserted for con-
venience. Finally there is the stress tensor o,; and the strain tensor e;; .

The unbounded anisotropic medium is now described in the ordinary fashion by the
following relations:

_1 (% %) .
€ = 2 ax,‘ + axi ) (1)
au,, )
Oii = Cij k1€t = Cijkt o (Hooke’s law) )
ax,
Cij ket = Cijik = Cii 1k Cijkt = Cri,ij (3)
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2
P % = pfe + %‘—l ; (Conservation of momentum) 4)
1
Yiien 8% = —f:; (Equations of motion) (5)
ii.x ax‘ ax)‘ i
Yiioo = —8i; ; Yiior = Yiieo = 0; (6)

Vi = %c.-,,,” ; (note the change in index order) (6)

The symmetry of the coefficients v implies the formula

_ 9 ou; av>
Ui vifs = .(?x-,‘ (Ui’Y.'i.xx ErN Ui, or )
where
u  _ — 0% _
Yii,en ax‘ ax)‘ () Yii, ez ax‘ 6:1:)\ - g.’ .

Green's integral formula results from (7) by integrating both sides over some volume in
@, z, y, 2) space and transforming the righthand side into a surface integral.

2. Construction of Green’s function. Green’s function for the equations of elasticity
can be obtained with the help of the method which is described by Courant and Hilbert
[1], (p. 260 ff., 460 ff.). Since the procedure is straightforward, there is no need for ex-
plaining the details; but the result will be stated explicitly.

Let us consider a matrix of 3 rows and 3 columns whose elements m,; are quadratic
functions of the four variables & , & , & , & given by

Ms; = Yijon &b - (8)

If M is the determinant | m;; |, and M,; the minor of m,; , then M is of sixth, and M;
is of fourth order in £, . We define now differential operators D and D,; which are obtained
from M and M;; by formally replacing £, — 9/0z, . These operators satisfy the relation

Yiion 8°/02, 02y Dy = 8y D. 9)

A polynomial E of sixth order in the variables £, 7, ¢ can be derived from the poly-
pomial M in the variables £, by letting & = 1, & = & & = 9, & = ¢. Similarly poly-
pomials E;; of fourth order in the variables £, 9, ¢ are derived from M,; . The equation
E = 0 determines in general 3 surfaces in the space of coordinates (£, , ¢), which are
called the normal surfaces. For a given direction in (£, %, ) space the distances from the
origin to these three surfaces are called 1/a, 1/b, 1/c, in increasing order.

The kernel associated with the sixth-order differential operator D is then formally
given as an integral over the normal surfaces

- @0 f f (1 - b—:)-l(l - g:)'l(z dx) f Ssinst cossE-x + cp.,  (10)

where dX is the surface element of the a-normal surface, and the cyclic permutation
refers to permuting the triple (a, b, ¢) and the corresponding normal surfaces. The
vectors £ and x are abbreviations for (£, 9, {) and (z, y, 2). £-x is the scalar produet.
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Green'’s function for the equations of elasticity (5) follow now from (9) and (10) by
differentiation

Ky =3 {(4 )2 ff (1 - b—2>_l( - ai:)_lE.., £dx + c.p.}- (1)

For given values of the coordinates (x, ¥, 2) and the time ¢ the integration is taken over
those parts of the normal surfaces which are contained between the planes £-x = ¢
and £-x = —tin (¢ 9, {) space. All singular integrations or differentiations are to be
interpreted with the help of the theory of generalized functions [2]

K,; gives the displacement at the point (z, y, 2) and time ¢ in the z-dlrectlon due to
an impulse of unit strength in the j-direction which is concentrated in space at the origin
and in time at ¢ = 0. K,; can be shown to vanish for small ¢ and for large ¢, namely if
¢ is so small that the planes | £-x | = ¢ intersect all normal surfaces, and if ¢ is so large
that the planes | £-x | = ¢ intersect none of them. For given coordinates (z, y, z) Green’s
function K;; has a singularity whenever the planes | £-x | = ¢ are tangent to one of
the normal surfaces. If the singularity is a é-function, one can call this singularity an
arrival since it may be compared with the signal propagation by compressmnal waves in
a liquid.

3. The amplitudes of the arrivals. Since K;; depends mainly on the direction of
the vector (z, ¥, 2) and on the reduced time r = #/r with » = (2° + 3* + 2°)'?, Green’s
function can also be written as

K, = (41.7)'2:—:2{[[ E.-,.(l - 2—2)_1(1 _ ai:)l £dz + c.p.} (12)

with the condition | £-x | < 7r for the integration over the normal surfaces.

For a fixed point (z, y, 2) we consider a value 7° such that the planes | £-x | = %
are tangent to one of the normal surfaces (called the critical surface to distinguish it
from the other normal surfaces) at the points =+ (¢°, #°, ¢°). It is convenient to use a
local coordinate system (p, o, + — 7°) which is given by

E=8 +ap+Bo+ 2 (r— 1),
n=1"+ap+ o+ Lr—), (13)

¢= 8 tapt B+ (= 1.

The unit vectors « and § are tangent to the normal surface at (£°, »°, ¢°), and directed
along the directions of principal curvature for the normal surface through (¢°, 7°, ¢°).
The equation of the normal surface is then given by

2 2
T—To=%(%+f%2)+“' (19)

in the neighborhood of the point of contact, R, and R, being the principal radii of curva-
ture of the normal surface. The higher terms in the expansion of the equation for the
normal surface will not be needed to find the amplitudes of the arrivals.

The integral over the normal surface is differentiated with respect to 7, so that its
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integrand has to be computed only in the neighborhood of the point (£°, 7°, ¢°). Indeed
for an elliptic point the intersection of the planes | £-x | = 7r with the critical surface
shrinks as 7 approaches 7°. This is not true for a hyperbolic point, but then the inter-
section can be considered in only a limited fixed neighborhood, because the remaining
part does not contribute to the singularity. In the same manner the intersections with
the other (not critical) normal surfaces do not contribute to the singularity and are
therefore neglected in the present investigation. It is further assumed that in the neigh-
borhood of interest the functions E;; , (1 — b*/a®), (1 — ¢*/a’), etc. are sufficiently
well behaved. The singularities come then only from the peculiar behavior of the inte-
gration [f £-dX in the neighborhood of + = 7°. This procedure gives the strongest term
in the singularities correctly.

At an elliptic point with B, > 0 and R, > 0 the approximate equation (14) can be
solved by

p=[R(r— ] cosy+ -, o=1[2R(r— ] sinyg+ ..., (15)
so that the integration becomes

f £dx = (R.R,)"* f dr f:' dy + -

= 2x7%(r — 7'0)(Rl[‘u"2)l/2 + -, r> . (16)
An analogous result holds for B, < 0and B, < 0

ff £.d5 = —(R\Ry)" f dr f:’d‘p + o

= —2r7°(° — DRR)'Z + -+, r< 7. a7
Outside of the range for + — 7° which is fixed by the sign of B, and R, at an elliptic

point, the integrals above have to vanish.
At a hyperbolic point with B, > 0 > R, the equation (14) is modified by writing

p = VR, (p* + o*), o = (=R (p* — o¥), r— 1 = 2p*c* + ... . (18)

The range of mtegratlon 1s now llmlted by some arbltrary limits for the varlables po* and
o* namely —p° < p* < p’and —¢” < o* < ¢". This gives

ff £dxE = To(“Rle)”’f do* uo* + - -

= 7'(— RR,)/z(T—r){logl—&-,+l}+ S (19)

where there is no restriction on the sign of » — 7°.

The differentiation with respect to ¢ of (11) can now be performed on the approximate
expressions (16) and (19), if one replaces again = by ¢/r. K;; is then to be understood as
a function of ¢ for a fixed point (z, y, 2). The strongest singularity of K,; for ¢ in the
neighborhood of 7°r, i.e. the amplitude of the arrival, is then obtained at an elliptic

point as
2\ -1 2\ -1 R R 1/2 0
E,,(l - 3—2) (1 - 55) (Buly) "7 14:3 a 8t — 7r),  (or c.p.) (20)
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and at a hyperbolic point as

§i>—1< Ei)—l (_R1R2)1/21_0 1 :
Eii(l —F 1 - e A = (or c.p.) (21

These formulae have been written as if they referred to the a-normal surface as the
critical surface. For the other surfaces as critical a cyclic permutation has to be made.
The arguments of the polynomial E,; are the coordinates (£°, 7°, ¢°) of the point of
contact for the planes | & | =

4. Multivalued displacements. Multivalued displacements can be defined in the
following manner: A sequence of simply connected curves C, in the plane z = 0, given
by their coordinates z*(o, t) and y*(o, t) as functions of a parameter o, is assumed to be
known. The intsrior of C, is defined as that part of the z-plane which lies to the left of
C, if one proceeds in the direction of increasing o. The displacement v, is continuous
and has continuous derivatives outside of the plane z = 0. Also the derivatives of v,
are continuous across the z-plane for a given value of ¢, with the possible exception of
the curve C, . But the values of v; are discontinuous across the z-plane at a given time ¢
in such a manner that for a positive &

for (z,y) inside C,,

lim [l),»(t, r,Y, -6) - U;(t, T, Y, +6)] = {6‘ (22)
§—0

0 for (z,y) outside C,.

Since the displacement v; may be expected to have singularities on the curves C, ,
a small cylinder Z, around C, has to be cut out of the (x, y, 2) space at constant time
t before applying Green’s integral formula. Let (I, m, 0) be the unit vector perpendicular
to C, for given value of o, and let n be the speed with which the curve C, moves in that
direction for the value o at the time ¢. A sequence of cylinders Z, can then be defined by

b= = Bt w = )+ s,
y = y*(o, t*) + ~—1"”T—2—cos 3, z=esing, (23
n

where the parameters t*, o, and ¢ are varied freely in order to describe a three dimensional
surface in (¢, z, y, 2) space. e is assumed to be a small positive quantity.

Green'’s integral theorem is now applied to the (¢, x, y, 2) space out of which the
interior of the cylinders Z, and a thin slab around the z-plane inside C, have been cut
out. This gives with Green’s function (11) of the variables ¢t — ', z — 2’, ete.

oK
wta oy =—[ ar [ s ff a2 3 v K (29

The situation in the present problem is not stationary, and the second term does in
general depend on the particular choice of the cylinders Z, , even in the limit of small
radius (small €). This leads to an ambiguity in the definition of the multivalued dis-
placement »; which is connected with the possibility of applying concentrated forces on
the curves C, without changing the condition (22). Indeed such concentrated forces
cannot (in the nonstationary case) be related unambiguously to the integral over the
stresses acting on a small surface around the points of attack of these forces, as the
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cylinders Z, around C, . It can be shown that with the particular choice (23) of Z, the
second term of (24) vanishes in the limit ¢ — 0, if one inserts for »; the function which
is defined by the first term of (24). The displacement

t .
vt 2, 9,2 = Beviia 6—2; f_w ar f de’ dy'Kp(t — V,z — 2/, y — y',2 — 2) (25)

where the last integral is extended over the interior of C, , gives a multivalued solution
of the equations of elasticity which describes a moving dislocation in the z-plane with
the Burgers vector 8; . It is (at least apparently) independent of the particular choice of
Z, . At distances from C, which are small compared to the radius of curvature of C, ,
the displacement (25) corresponds to a uniformly moving dislocation.

The proof that v; as defined by (25) has the correct discontinuities in the z-plane,
whereas its derivatives are continuous, is cumbersome. The details of the computation
will be worked out in the case of isotropic elasticity.

5. The isotropic case. The equations (5) can be written in the isotropic case

{(b® 8°/ox; — 8°/38) 6.; + (a® — b°) 8°/dx; Az u; = —f, . (26)
The operators D;; are simplified to
D;; = (a® A — 3°/9F) &;; — (a® — b°) 8°/dz; ox; , 27

and the relation (9) becomes
{(B* A — 8°/8F) &;; + (a® — V°) 9°/dx; dz;} D,
= (a® A — 3°/35)(V* A — 8°/dF) 6.,  (28)
where A is the Laplacian. The kernel K of (10) is now -
K(t,2,9,9 = @™ [[[ @ sin bkt — o7 sin akt)(@® — 8)7k exp (kx)  (29)

with ¥* = k2 + kZ 4+ k2 . K and its first two derivatives with respect to time vanish
at ¢ = 0, whereas its third derivative is 6(x)d(y)d(z) at ¢ = 0. The integration can be
performed explicitly

0 for at <r,
K = %r (@ — ¥)7'(/r — 1/a) for bt <r < at, (30)
[ab(a + b)]™" for r < bt.

With an arbitrary source distribution f;(t’, 2/, ¥/, 2’) and with K written as function
of t — t/, x — z’, etc. one has

[ar [[[ wxr,
= o [|] @ {f‘j" w g+ [T )

The operator D;; acting on this expression leads to surface terms because of the peculiar
limits on the {-integration. The i-component of the displacement due to the body forces
f; is then given by
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r/b
un [[f dax’{b'zr"f,-(t = r/b) + &) 0w 0w, [ av-rpe — ¢)
Jr/a .

+ 7 — )@ — )T — r/a) — b6 — v/ b)]} » o (32)

where the time variable in f; is explicitly indicated, the spatial arguments of f; are
z',y', 2, and r is equal to ((z — 2)* + (y — ¥)* + (¢ — #/)*)"/% This last formula is
essentially the same as the one obtained by Love [3].

In the isotropic medium the coefficients (6) are

Vi = b° 8 8 + (@® — b°) 8,1 85, (33)

as can be seen directly from (5) and (26). The Burgers vector 8; has now the components
(8, 0, 0), since it is natural for the Burgers vector to lie in the slip plane z = 0, and the
z-coordinate may then be chosen parallel to the Burgers vector. The differentiation in
(25) is simply B8b°6,;9/0z. The integral in (25) corresponds exactly to the integral (32)
with f; = Bb%8,; concentrated in the space z = 0 inside the curves C, . Therefore the
displacements v, are given by the formula

+ LU/ 4 [ T - o)

t'=t—r/b 9z, 0y —r/b

4 @ = 2@ = ) < b

r a’r

(4m~'B 6/6z-f dz’ dy'{%

1)
- = , 34
t'mt—r/a r t'mt—r/b ( )
where the integration is extended over the inferior of C, .
It is not immediately apparent that this expression is discontinuous as z approaches
0. To show this property let us consider the first term which occurs only for £ = 1, i.e.
only for the first component of the displacement,

~um8 [[ rza ay, (35)

where the integration is extended over the interior of C, . This is interpreted as a surface
integral in the (¢, «’, ¥') space, over the wave surface

be— 1) = (@ =) + @ -y +" =7, (36

as far as it lies inside the curves C, . As z approaches 0, the main contribution to the
integral comes from the. point (z/, y’) in the immediate neighborhood of the values
(z, y), provided the point (z, y) lies inside the curves C, at time {. Moreover since the
integral (35) over (z’, y’) converges without restriction to the interior of the curves C, ,
the contribution of this boundary to the integral (35) vanishes as z approaches 0. There-
fore (35) becomes in the limit of vanishing 2z

1o zdz’ dy’
—@4m'B Ilzlllir}o ff =2V + (y — §) + 27" @7

integrated over all (z', y’) space. This last integral is —B/2 sign 2, and it has just the
discontinuity at z = 0 which is required by (22). By the same method the integral (35)
is seen to vanish for the points in the z-plane outside the curves C, . The various parts
of (34) can be investigated by similar arguments.
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