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SINGULAR PERTURBATION ANALYSES OF THE
DIFFERENTIAL EQUATIONS OF A TUNNEL DIODE CIRCUIT*

By
W. L. MIRANKER

IBM Research Center, Yorktown Heights, N. Y.

1. Introduction. In this paper we present two applications of singular perturbation
theory to a system of differential equations which describe a tunnel diode circuit. The
tunnel diode is a solid state device which can be employed in memory and logic circuits.
The phenomenon of tunneling which macroscopically can be described as negative
resistance enables this device to be used in the design of flip-flop circuits. In addition
its high speed of response [0(10~9 sec)] has brought it to the forefront of modern day
computer circuits.

The singular perturbation applications to be presented here are related to analyses
of relaxation oscillations conducted by Haag [1], Dorodnitsyn [2], and Carrier [3] for
van der Pol's equation. Levinson [4] has demonstrated the validity of the leading term
in the expansions related to these analyses.

In Sect. 2 we describe the circuit in question and derive the related differential
equations. Then we give a description of the operation of this circuit as a bistable switch-
ing or memory device. This description makes use of simple phase plane notions. In
Sects. 3 and 4 we perform the singular perturbation analyses to derive approximations
to the solution trajectories in the form of asymptotic expansions. Line integrals along
these expansions then give expressions for the transition time. In Sect. 5 we give some
numerical values for the excursion time of solution trajectories based on the results of
Sects. 3 and 4. Our analyses in Sects. 3 and 4 are related to [1J, [2], and [3] since the
trajectories in the limit of small parameters move alternately abruptly across the phase
plane and then cling closely to special curves in the phase plane. They differ from [1],
[2], and [3] since our trajectories are not closed ones representing periodic motion, but
rather converge toward singular points in the phase plane.

2. Derivation of the equations. The circuit which we consider is shown schematically
in Fig. 1.

Here f(v) represents the current through the indicated box as a non-linear differentiable
function of voltage across the box. The circuit equations are
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L^y = E — Ri — v.at

(2.1)

This system may be written as the following single second order equation:

LC § + [RC + Lf(v)] | + Rj(v) + v = E. (2.2)

Introducing the new variables

x = It' e = ^ ' 1 = Ri> = R^' (2>3)

where a: is a dimensionless time, e is a dimensionless constant and / and F(v) have the
dimensions of voltage, (2.1) and (2.2) become

<2-«

«§+[« + F'(v)] fx + F(v) + v = E. (2.5)

In Sect. 4 we will consider these equations when e is small. In Sect. 3 we will consider
the equations when the following change of variables is made and the complementary
situation when 8 = 1/e is considered small:

z = t/{LC). (2.6)
With this dimensionless time (2.1) and (2.2) become

|-I-m, (2.7)

5 § + [1 + **»] | + m +v = E. (2.8)

Using the equations (2.4) we will now sketch a method by which the circuit of figure
1 is used as a bistable device. The phase plane of (2.4) is given in Fig. 2 which also re-

1= F(v)
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veals the geometric configuration of the function F(v). In this figure we have chosen E
so that there are three singular points, P0 , S, and Pi . We first observe that
if vF(v) > E2/4: for | y | sufficiently large, then all solutions of (2.4) are bounded. This
follows from the fact that

| | 0 (2.9)
for r2 sufficiently large. Then we note that there are no limit cycles possible if t+F'(v) >0.
(i.e., if the negative slope of F(v) be not too large in magnitude.) This follows from (2.5)
where e + F'(v) is seen to be the damping term in that equation. Now at the singular
point S, 1 + F'(v) < 0 since there the load line (E — v — I = 0) has slope —1 and is
less steep than the diode characteristic (I = F(v)). This in turn implies that S is a saddle
point. We have sketched the fence through S and labeled it A B in Fig. 2. Similar argu-
ments show that the points P0 and Pi are stable nodes or spirals.

Now every trajectory in phase plane (with the exception of A B) tends to P0 or Pi
giving one of two voltage readings, say. Suppose the circuit has settled down to P0 and
we wish to move it to Pt by means of a temporary impulse. To do this we change E
by AE as in Fig. 3.

The point P2 is stable since infinity is unstable and there are no limit cycles. The
trajectory in the vicinity of P0 will now start to move and will approach P2 . As soon
as it has crossed the fence we remove the impulse AE. The trajectory will then tend to Pi.

3. Small 5. 1. Description of ideas.
In this section we will employ the equations in the form (2.7) or

dv „ I - F(v) n
dl~ SE-V- I' (3-1}

where 5 is considered to be small. We will obtain asymptotic expansions which charac-
terize the trajectories as well as the time of transition along them. To fix ideas consider
the situation given schematically in Fig. 4.

From (2.7) we may deduce the following qualitative properties of the direction field
in phase plane: I = F{v) (the diode characteristic) is the locus of vertical trajectories,
E — I — v (the load line) is the locus of horizontal trajectories, in the domains A, B, C
and D delimited by I — F(v) and E — I — v, the trajectories move down and to the
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Fig. 4

right, up and to the right, up and to the left, and down and to the left as z increases
respectively.

Now from (3.1) we see that as 8 —» 0, dv/dl —> co except near the load line. In this
case the trajectory emanating from P0 will rise nearly vertically until it reaches the load
line. There it will bend abruptly so that it might cross this line horizontally. Once across,
it clings closely to the load line, following it into the point P (which can be seen to be a
stable node, by familiar methods). As 8 increases the trajectory will rise less abruptly
and then cling less closely to the load line.

In the following discussion we will characterize these ideas analytically. The results
take the form of three asymptotic expansions characterizing the trajectory which we
have just described in the three portions of its transition (vertical rise, crossing the load
line, and following the load line into P). Finally line integrals are used to give transition
time estimates.

We have specialized our remarks to the trajectory in question because of the crucial
role which such a trajectory plays in the switching process described in Sect. 2 above.
However it is a simple matter to obtain expansions for any trajectory in phase plane.

2. The asymptotic expansions. Let us proceed formally and look for a solution of
(3.1) in the form

v = t 6'UD- (3-2)
0

Inserting this into (3.1), expanding using Taylor's theorem, and then collecting terms
leads to a system of equations for the l„ . The first three of these equations are

l'0(E - I - l0) = 0, (3.3)

l[(E — I — l0) + I'oi-h) = I - F(l0), (3.4)

l'2(E - I - l0) + «(-/,) + l'0(-l2) = -F'(l0)k . (3.5)

Equation (3.3) gives us two choices for l0 . The first l'a = 0 or la = constant clearly
corresponds to the vertical section of the limiting trajectory (i.e., for 8 = 0). The second
choice l0 = E — I is nothing but the equation for the load line itself and thus corresponds
to the section of the limiting trajectory which clings to the load line.
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If we use the root

l0 = E - I (3.6)

of (3.3), then (3.4) and (3.5) yield

k = I — F(E — I), (3.7)
l2 = I — F(E — I). (3.8)

In general we may observe that ln is a polynomial in I, and the derivatives of F(v) evalu-
ated at v = E — I. Thus the asymptotic expansion

v = E - I + S[I - F(E - I)] + 52[/ - F(E - /)] + 0(53) (3.9)

for the portion of the trajectory which is near the load line is asymptotically convergent
for all finite values of I. This expansion shows that v deviates from the load
line (v = E — I) by a quantity of order 0(5) which is moreover positive at points above
the diode characteristic.

It is easily proved by induction that /„(/[) = 0 so that at / = /i (3.9) becomes

v = Vi . (3.10)

Thus the asymptotic expansion (3.9) has the convenient property of passing through
the node P.

Choosing the root
l'o = 0 (3.11)

of (3.3) gives us

= fo > (3.12)

since in the limit as 5 —> 0 the expansion (3.2) should reduce to the vertical line v = v0 .
Then

<*«>

The choice of the constant of integration is made so that lt(10) = 0. We do this since
when I = I0 , we want v = v0 (i.e., so that the expansion passes through the point P0).
Integrating (3.13) we get

h = - E + v0] In f ~ "° ~ I +I0-I. (3.14)
JQ — V0 — 10

We note that k has a logarithmic singularity as I —* E — i>0. By induction it can be
proved (apart from logarithmic singularities) that

J. ~ [I - (E - wo)]1-. (3.15)

Thus the asymptotic expansion for the vertical section will be valid only if we stay
appropriately far away from the load line. In particular we must have

I <E -v0- 0(5), (3.16)
which is satisfied, for instance, if

I = E — vQ — const X Sut. (3.17)
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Of course this means that the two asymptotic expansions just obtained are not both
valid in a common region of the phase plane since (3.9) shows that v is of order 0(8)
above the load line while (3.16) requires the vertical section to be of order >0(8) below
the load line (see Fig. 5.)

Fig. 5

To join the two expansions, we must introduce a third expansion valid in a domain
overlapping the domains of validity of the previous two, i.e., in a neighborhood of the
point where the trajectory crosses the load line.

In the neighborhood of this point the trajectory given as, say, v a function of I is
not single valued (see Fig. 6.) Then we introduce a new coordinate system (q, I) re-
placing (v, I) through

q = (E - v- l)/8. (3.18)

Thus the lines q = const are parallels to the load line which itself corresponds to q = 0.
We denote by P2(v2 , /2) the point where the trajectory crosses the load line.

The variable q is stretched by 8 in order to amplify the neighborhood of the load line

Fig. 6
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into which we are looking. In these new coordinates, the differential equation (3.1)
becomes

— — ^L . to iq\
dq I + q - F(E - I - Sq) '

Let us look for a solution of this equation in the form

I = E Xn{q) 8\ (3.20)
The already familiar method leads to a system of equations for the x.. • The first two
of these equations are

Xo[q + Xo — F(E — xo)] = 0, (3.21)

x'iIq + Xo — F(E — Xo)] + Xo[Xi + P'{E — Xo)(<? + Xi)] = — 9- (3.22)

Since I should equal I2, the value of I where the trajectory crosses the load line when
5 —> 0, we choose the root

Xo = 0 ar Xo = J-i (3.22)

of (3.21). Of course the value of I2 is as yet unknown. Solving (3.22) gives

Xi = — q + U In [(g + u)/u], (3.24)

where

u = I2 — F{E — I2) > 0. (3.25)

Here the constant of integration is chosen to be zero since when q —» 0 we want the
expansion (3.20) to reduce to / = /2 . By induction we may show that apart
from logarithmic singularities

(3.26)
Xn ~ q , &S q CO

Xn ~ (? + w)~("-1\ as q^—u< 0.

Thus this matching expansion is asymptotically convergent for

—u + 0(5) < q < O(r'). (3.27)
This is satisfied for example if

—u + 8U2 ^ q g 5~W2. (3.28)

In terms of I and v (3.28) becomes

b[-u + 5l/2] £E - v- I g 8W2. (3.29)

Comparing this with (3.9) and (3.17), we see that the new expansion is valid in a
region which overlaps the previous two.

Let us match the vertical expansion (3.9) with the matching expansion

I = I2 + o( — q + u In [(5 + u)/u]) + 0(52). (3.30)

According to (3.28) we may choose the matching value of q as
q* = 8~,/2. (3.31)
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Then from (3.29) the matching values I* and v* of I and v are related as in

/* = E -v* - 51/2. (3.32)

Inserting (3.31) into (3.30) gives I* explicitly as

I* = I2 — 51/2 + 5u In [(5"1/2 + u)/u] + 0(8). (3.33)

Combining (3.32) and (3.33) gives us v*.

v* = E - I2 - Su In (5~,/2 + u) + 0(5). (3.34)

Now we insert these values for I* and v* into (3.9) to get an equation for /2.

E — I2 — 8u In (8 1/2 + u) + 0(5) = v0 + 5^[F(w0) — E -f- v0\

L. E - v„ - h + 51/2 - 5m In [(5~1/2 + u)/ul + 0(5)
E v0 Iq

+ /„ - I2 + 51/2 - 8u In [(5"1/2 + u)/u]| + 0(5). (3.35)

This equation may be solved to yield

12 = E — v0 + § ^ In 5[E — v0 — F(v0)] + 0(5). (3.36)

Inserting this into (3.33) gives I*
I* = E — v0 — 5!/2 + 0(5). (3.37)

Matching the load expansion with the matching expansion is even simpler. Here we
take [see (3.28)]

q** = -u + 51/2. (3.38)

The matching value I** of I is obtained by inserting this value of q into (3.30).

I** = I2 + 5(w - 5,/2 + u In [51/2/w]) + 0(53/2)

— E — vo — 5I/2 + § 5 In 5 + 0(5). (3.39)

The following is a summary of the results just obtained.
In the interval

I0 g ^ /* = E - v0 - 5,/2 + 0(5), (3.40)

we use the vertical expansion

v = v0+ 5{[F(t;0) -E + v0] In Jr ~Jo° ~ I +/„-/} + 0(52). (3.41)

In the interval

51/a - [E - v0 - F(v0)] {1 + J 5 In 5[1 - F'(r0)]} + 0(5)
= q** ^ q ^ q* = 5"1/2, (3.42)

we use the matching expansion
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/ = E — v0 + \ 8 In 8[E — v0 — F(v0)]

+ 8[E -vo - F(v0)] In \q + [E - v0 - F(t>0)]} + 0(8). (3.43)

[Here we note that the third term in the right member is not 0(8) since at q = q** it
becomes 0(8 In 5).]

In the interval

/, g I g I** = E - vo - 8U2 + J 6 In 8 + 0(8), (3.44)
we use the load expansion

v = E — I + 8[I — F(E — /)] + 0(82). (3.45)

3. Time of transition. To compute the time of transition from P0 to P, we proceed
as follows.

(2.7) gives

2 = / I - F(v) (3'46)

while (3.19) and (3.46) give

Z = S f I - q — I — 8q)' (3"47)
We use (3.46) to obtain time expressions for the vertical and load sections while

(3.47) is used in the matching sections. Calling zx ,z2, and z3 respectively the times spent
in the vertical, matching, and load regions we have

f" 5 d{[F(v0) -E + v0\ In (E-Vo- D ~ I\ + 0(82) dl
J ( w~Z ITT 1 ' ^ ^

I - Fy0 + 8[F(v0) -E + v0] In ^ ^ + 8(10 - /) + 0(52)|

= -8 In 8U2/[I2 - F(E - h) + 8'1/2] (3.49)

with I2 as given in (3.36), and

z3
. ['* d{—I+8\I — F(E — 7)1}

J,.. I - F{E — 7 + 8[I — F(E -/)]}+ 0(82)' l /

Here the upper limit 7\ denotes some value of 7 greater than 7j since it takes an infinite
amount of time for the solution to approach the node.

These formulas may be expanded in asymptotic series in small 8. For example,,
using the value of I** given in (3.44), we obtain explicitly for z3 :

z3
f' ~dI + (~51/2 + I 5ln 8)

JE-,0 I - F(E - I) + E -vo - F(v0) + ( )- (3-51)

4. Small e. 1. Description of ideas.
Here we will consider the equations in the form (2.4) or

dl _ E — v — 7 . .
dv e I - F(v) ( ^

where e is considered small. This situation is analogous to the work in [1] and [2], The
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Fig. 7

methods and results here are similar to those of Sect. 3. To fix ideas consider the situation
given schematically in Fig. 7.

Using the direction fields described in relation to Fig. 4, we see from (4.1) that in
the limit as « —> 0, the trajectory will emanate vertically from P0 and cling closely to
the diode characteristic, rising along it until it reaches the peak. Thereupon it will move
nearly horizontally across the phase plane. When it nears the diode characteristic it will
bend abruptly so that it might cross it vertically. Then it will cling closely to the diode
characteristic, following it into P0 . As t increases from zero, the trajectory will cling less
closely to the diode characteristic and move less horizontally in between.

The results here take the form of a combination of four (as contrasted to three in
Sect. 3) types of asymptotic expansions. These expansions characterize the trajectory
when (i) it clings to the diode characteristic (n) it moves nearly horizontally across the
phase plane (Hi) it crosses the diode characteristic (iv) it turns and passes near the diode
peak. The expansions of types (ii) and (iv) are used once for the trajectories illustrated
in figure 7, while those of types (i) and (Hi) are used twice. As in Sect. 2 it is a simple
matter to obtain expansions for any trajectory in phase plane. (In particular for a limit
cycle which might exist were the point Pc located along the negative slope portion of
the diode characteristic.)

2. The asymptotic expansions. In the succeeding discussion we will make reference

Fig. 8
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to a number of symbols. These are described schematically in the following figure 8.
Our first step is to proceed formally and look for a solution of (4.1) in the form

/ = i: hn(v)e\ (4.2)
0

Inserting (4.2) into (4.1) gives by the usual procedure a system of equations for the
hn . These equations are:

h'o[ho - F(v)] = 0 (4.3)

hi[h0 — F(v)] + h'oh, = E — v — h0 (4.4)

K[h0 — F(w)] + h'n-Jix + • • • + h'0hn = —h„-i , n > 1. (4.5)

(4.3) gives us two choices for h0 . The first,

h'o = 0 or h0 = constant, (4.6)

clearly corresponds to the horizontal section of the limiting trajectory (i.e., for e = 0).
The second choice,

h0 = F(v), (4.7)

is nothing but the equation for the diode characteristic and so corresponds to the sections
of the limiting trajectory when it moves along the diode characteristic.

With the choice (4.6) for h0 , we have

<4«

Here vL and /, are constants of integration. (I1 here is not necessarily equal to the ordinate
of Pi .) vL has already been chosen in figure 8 and represents some convenient value.
li will subsequently be determined in terms of vL .

For h2 we have

h2
_ r° E — v — F(v) r E — V — hp , . T

- JVL [ho - F(v)T U,L ho - F(Vl) av +
E — v — h0 dv + I2 . (4.9)

In a similar manner each hn can be computed in terms of the previous ones by a
quadrature.

We will refer to the series which we have just obtained as the horizontal series. Since
as e —> 0 the horizontal series should converge to the horizontal line through the peak
in F(y), we must choose

h0 — F(vm)- (4.10)

From (4.8) we see that hi has a logarithmic singularity at vM and v, . From (4.9) we
see that h2 has at most a simple pole at these points.

By induction we may show (apart from logarithmic singularities) that hn has poles
at vM and vx of order n — 1. Thus the horizontal series will preserve its asymptotic
character if v is not too close to vM or ^ . In particular if

(v - vu ,t>,) > 0(e), (4.11)
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which is satisfied if
v ^ vM + t'2 or v ^ vM + e1/s (4.12)

and
v ^ Vi - e1/3. (4.13)

In order to distinguish the coefficients of the formal expansion in the case where the
solution is moving near the diode characteristic from the horizontal section, we denote
the coefficients by the symbols c„ . Thus the choice (4.7) gives

c0 = F(v),

_ E — v — F(v) .
Cl ~ F'(v) ' (4'l4)

c2 = -E F [F'2 - (1 + F')F' - F"(E - V - F)L

We will refer to this series as the c-series.
Since F'{vM) = 0, we see from (4.14) that Ci has a simple pole at vM .
By induction we may prove that c„ has a pole at vM of order 3n — 2. Thus the c-series

preserves its asymptotic character if

V f jf > 0(e'), (4.15)

which is satisfied if
v ^ vM - a(4.16)

The c-series describes our solution for v0 < v < vM and vc < v < v1 (see figure 8).
The A-series describes our solution for vM < v < vc. At v = vM neither series is an asymp-
totic series. At v = Vi the A-series is not an asymptotic series. Thus the c- and h-series
do not have overlapping domains of validity.

We may even observe further that the c-series evaluated at v0 gives

I = F(v 0) + 0(e). (4.17)

Thus the c-series does not pass through the initial point P0(v0,10). At the node [vc, F(yc)]
we are more fortunate, since we can show by induction that

cn(vc) = 0, n > 1. (4.18)

Thus the c-series passes through the node.
To overcome these defects we must introduce new expansions in the neighborhoods

of three problematical points [v0, F(v0)], [vM , F(vM)}, and [i^ , F(i>i)]. The first and third
of these points are quite similar and because the trajectory crosses the diode characteristic
at these points we will call them crossing points. The point [vM , F{vM)] we call a turning
;point because the trajectory turns the diode peak at this point.

We now proceed to determine these additional asymptotic expansions.
In a neighborhood of a crossing point I is not a single valued function of v along the

trajectory (see figure 9 below). We therefore introduce a coordinate q in place of I, with
respect to which we have the trajectory given as a single valued function, q is given by

q = -7 ~ F(p)- (4.19)
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q=0

LOAD LINE
q>0

The variable q is stretched by e in order to amplify the effects in the neighborhood
of the crossing point in which we are operating. The lines q = constant are parallels to
F{v) which itself corresponds to q = 0.

In the new coordinates the differential equation (4.1) becomes

_  £2  (A OfYY
dq~ E - v - F + q(e + F')

We look for a solution of this equation in the form

V = X) Xn(?)e". (4.21)
0

Inserting (4.21) into (4.20) gives by the usual technique a system of equations for
the Xn , the first two of whose members are

[E-xo - F{xo) + qF'(x»)U = 0 (4.22)

[E -x0 - F(xo) + <Z*"(xo)]xJ + [ Xj + q ~ F'Xl + 9X1^"]X0 = ?• (4.23)

Since as e —» 0, the trajectory should pass through P,(y, , 7J, we choose the root

Xo = 0 or Xo = fi (4.24)

of (4.22). Solving for xi , we have
Xi = [q + u In {{u - q)/u}]/F'(v1), (4.25)

where
u = [E -Vl- F(vi)]/F'(v,). (4.26)

The constant of integration chosen so that xi(0) = 0. In a similar manner we may
solve for all the x» > each by a single quadrature.

Xo is regular but since u is positive we see from (4.25) that

Xi ~ q, q ~ — co ~ In (u — q), q ~ u. (4.27)

By induction we may show that

x» ~ q", q ~ — c°

~ «~ »• <4-28>
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Thus the crossing point series derived here, which we will refer to as the x-series,
preserves its asymptotic nature if

q < 0(«_1), far q < 0, (4.29)

which is satisfied if
q = -e~I/2. (4.30)

For positive q we must have

u — q > 0(e), (4.31)

which is satisfied if
q = u - (4.32)

In terms of the original v, I coordinates (4.29) and (4.32) may be written respectively as

/ < F(v) + 0(1) (4.33)
and

I = F(v) - tu + 63/2. (4.34)

Comparing (4.33) with (4.11) we see that the h-series and the x-series overlap.
Examining (4.14) we see that the c-series sums to I = F(v) + 0(e). Thus (4.34) shows
that the c-series and the x-series overlap.

As we move along the diode characteristic, / = F(v) and approach the turning point
[vM , F(vu)], the c-series ceases to be asymptotically valid [see (4.15)] if v — vM = 0(e1/3).
On the other hand at v = vM + 0(t'3) each c„ ,n > 1, is 0(e2/3). These observations lead
us to introduce the following new variables to characterize the trajectory in the neighbor-
hood of the turning point:

e1/3u = v — vM , (4.35)

I - F{v) = t2/3Q. (4.36)

u = 0
u<0 I u>0

Fig. 10

In these variables the differential equation (4.1) becomes

u3q dQ + FrQ== e-/3[£ _ ev3M _ _ t2/3Q _ ^ (4 3?)
au

where F is evaluated at vM + e 7 u.
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If we look for a solution of (4.37) in the form

Q = E Qn(u)en/3, (4.38)
0

we are lead by already familiar methods to a system for the Qn , the first two of whose
members are

QoQ'o + F"uQ0 = E -vM - F (4.39)

QiQi + QoQ'i + F"vQ, + F"' jQo = -u. (4.40)

Here the F's are evaluated at vM ■
We want the range of the solutions here to overlap the range of validity of the c-series.

Since v — vM > 0(e1/3) for the c-series to be a valid one, (4.35) shows that u —* — °°
as e —» 0, if we are to be in the range of validity of the c-series; on the other hand since
in its range of validity the c-series behaves like I < F(v) + 0(t'3), (4.36) shows that
Q —> 0 as e —> 0 in the range of validity of the c-series. Thus we must choose a solution
of (4.39) which tends to zero as u —> — . We will now make plausible that there is
exactly one such solution.

We write (4.39) as

dQ0 _ E Vm F F"uQg
du Qo

In figure 11 we sketch the phase plane of this equation.
The hyperbola uQ„ = (E — vM — F)/F" is drawn and is the locus of horizontal

trajectories. The w-axis is the locus of vertical trajectories. The arrows indicate the
direction of the field in the various sectors. An analysis of this situation requires that
there exist a unique trajectory which vanishes as u —* — °°. The trajectory, which is
asymptotic to the hyperbola and the negative w-axis, along with several others are
indicated by broken lines.

We must now determine the behavior of this trajectory at u —» + °° in order to
match this turning point series, which we will call the Q-series, with the c-series and the

Fig. 11
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h-series. By the method of undetermined coefficients we find for Q0

n — E — vM — F 1 . (E — vM — F) _1 _ (E — vM — F) 1 . ,.
Q° F„ u + p" 3 u4 + 5 F„t u7 + • • ■ (4.42;

as u —■» — oo.

D — ^" 112 A- R 4- 9 E — Vm ~ F 1 , . P(E — vM — F) 1 . , .
Qo - —^ u + P + * p" u 3F"2 t? (4.43)

as u —> oo.
Here

/ 2 T F"2 T/3
P = a/ -p77 [_4(£ _ ^ _ ^)J ' (4-44)

where a is the smallest root of

Jusih3'2) + J-U3(f«3/2) = 0. (4.45)

Here Jy is the Bessel function of order y. (see [2]).
In a similar manner we determine that

Qi pn M + 2 F" J

E-vm-F [\ , F"' E — vM — F~\ 1
F"3 L 2 F" -I w2+ • • ■ (4.46)

as u —> — oo.

X = + yj [-1 + F'" — pr -] ln« + 0(1) (4.47)Q
as u —» oo.

By induction we may prove that

~ 0(wn_1), «-»- oo (4.48)

and

Q.~Q(u"'1), m-> oo, n ^ 2. (4.49)

The range of validity of the Q-series is then given by

| u | < 0(e_1/3) (4.50)

or

I v — | < 0(1). (4.51)

This is satisfied for example if

+ e1/a, v ^ vM - e1/B. (4.52)

Comparing this with (4.13) and (4.16), we see that the range of validity of the Q-
series overlaps those of both the c-series and the h-series.
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We are now in a position to put together the pieces which we have just obtained.
The details of this process are straightforward and proceed along lines exactly analogous
to the matching process conducted in Sect. 3. We forego all details and content ourselves
with the following summary.

5. Summary. In the interval
_ 1/2

Vo ̂  v ^ v* = v0 + p,^ ^ In —— h eu + i'2, (4.53)

the trajectory is defined implicitly by

e r I — F(v) , , I — F(v) + tu~\ ,v = Vo + F^j [ 7 +Mln ^ J +0(0 (4.54)

where

u — -[E - v0 - F(v0)]/F'(v0) < 0. (4.55)

An explicit representation in this interval is

v = v0 + e[—q + u In {(q + u)/u}]/F'(v0) + 0(e) (4.56)

for

0 < q = -[/ - F(v)Ve < u e1/2. (4.57)

In the interval

vf ^ v ^ vM - t1/6 (4.58)

the trajectory is given by

I = F(v) + 6 E ~p~v) m + 0(e2). (4.59)

For

vM ~ e,/6 Sv ^vM + e1/2, (4.60)

the trajectory is given by

7 = F(v) + e2/3'

In the interval

+ 0(e4/3). (4.61)

J/2 ^ _ .. I 6 F--r-1/2 ' -■ 1- e 1/2 + uVm + € ^ V ̂  vf = .Vl + | c + u In J " | + 0(e2), (4.62)

where

-u = [E - V! - FivM/F'iVi) < 0, (4.63)

we have for the trajectory

/ = fW) + [f E^yj^> * + /,] + OW). (4.64)
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Here Ii is given by

It = —u In e - m In it + + u In F'(v0 — B
Zt [V,)

+ ev2 ln r M _ v _ ^Ml+ in w 2U 2F'2(v1) J

+ Au* + l!!M u\xiu — u2 \nu + Ml1 - F"(v,)l ln F,M _ *"'(»> - 2~|+ e + F'\v,) UlnU u [nu+ F'\vs) 2F'\Vl) J

. J f"W . u3 u\l - F-M]! n( .+ e(ln e) [W^) + 8 iFWJ + 0(elne)" (4-65>

Here

B — u ln F'M - [F{Vm)F'7{v^Vi:)] [In [F(vM) - F(vL)] - 1]

- £ {[*-(«*) - F(v)][\n [F(vm) - F(v)] - 1][-^

do. (4.66)

'M
»

F"'(v)[E - v - F{v„) 1 - F"(v) _ „ F"\v)\E - v - F(vM) 1
F'4(y)

Now in the interval
1/2'

D? g 1) g Oj* = »! + TyT" u — e1/2 + u ln —
uF'(v 0

with w as given in (4.63), the trajectory is given implicitly by

or explicitly by

v = t>i + F
ty [«+»(").

(4.67)

I £ r ^ — F(v) . , I — F + eU~] . 2s /.
!, = !,,+FWL e + rn J + (4-68)

+ 0(e2) (4.69)

in the interval

— e~1/2 S qSu - e1/2, (4.70)

with 5 as given in (4.57).
Finally

/ = F(v) + e E ~p,~ F(V) + 0(e) (4.71)

in the interval

vt ^ v ^ vt (4.72)

where is some value of v slightly larger than vc .
As in Sect. 3 the transition times are given as line integrals over the approximations

to the trajectories. Again we merely indicate the results. In the ensuing formulas x„
denotes the time to go from v = a to v = /3 (x is as given in (2.3)).
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*::* = [-iln 6 +lnE ~l\l)F(Vo)] + (4-73)F'(v,
/•»! '^ = I . 1

E - v - F(v)

[rw + ,(i - - F"W'V-(:>- m) + H *

^ [' - *" QM + 0i<">] * «"•

r"' l/t = f
J » M + <l/l

E v F{vm) . „, 2,• T(„„) - «») + 0<<>

E — v — F(vm) — e I*^/)-to)* + 7i] + w>
cfo (4.76)

»::: = [in e,/2 - in (ri/2 + «)] + o(e2) (4.77)

„c+ rc+ i._ 
J... E - v - F{v)

. /, 1 + F'(|») F"(»)[tf - 0 - F(v)]\ , n/J,
• [/"« + V - f'fr) - F'Xv)  ) + °(e} J dv- (4-78)

5. Numerical Results. The expressions for the zn , as given in (3.45), (3.49), and
(3.51) and the a;'s as given in (4.73) through (4.78) were evaluated numerically. f(v) as
given in figure 12, is an experimentally obtained tunnel diode characteristic. R is taken
to be 100, E = 0.34, while the initial point P0(v0 , la) = (0, 0). The final values of I\
in (3.51) and v\ in (4.7-8) were chosen to be 1.05 times lx and vc respectively, (i.e. the
trajectories were allowed to come within 5% of their terminal values.) The results are
given in the following tables. In these tables an entry of the form p(—n) denotes p X 10"".

0.05 0.10 0.15 0.20 0.25 030 0.35 0.40 0.45
y-f

Fig. 12
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<5 zx Z2 Z3
1.0 (-1) .30 (-2) .24
1.0 (-2) .11 (-1) .46 (-1) 5.5
1.0 (-3) .22 (-2) .69 (-2) 6.1
1.0 (-4) .33 (-3) .92 (-3) 6.2
1.0 (-5) .44 (-4) .12 (-3) 6.2
1.0 (-6) .55 (-5) .14 (-4) 6.3
1.0 (-8) .11 (-6) .18 (-6) 6.3
1.0 (-12) .41 (-9) .28 (-10) 6.3
1.0 (-16) .39 (-12) .39 (-14) 6.3

This table is graphed in Fig. 13.
Here we see that the time which the trajectory spends in moving along the load line

is the dominant contribution of the transition time. It is at least 99% of the transition
time for 8 < 10~2. At 10~2, z3 is approximately 90% of the total time. Only for 8 > 10_1
does z3 contribute a significant amount to the total time while it appears that zx comes into
play only for 5 near 1. Notice that for small 8 the transition time is constant.

6 Xx Xx X2 Xi xb x6
0.3 (-4) .19 (-4) .26 .63 .36 (-7) .11 (-3)
1.0 (-4) ..47 (-4) ... .63 .20 (-7) .30 (-3)
1.0 (-5) .77 (-5) .34 .63 .22 (-7) .38 (-4) .10
1.0 (-6) .10 (-5) .37 .63 .44 (-8) .45 (-5) .69
1.0 (-8) .15 (-7) .37 .63 .28 (-7) .60 (-7) .75
1.0 (-12) .26 (-11) .38 .63 ...(-11) .90 (-11) .75

This table is graphed in Fig. 14.

logio8
-2 -I O

Fig. 13 Fig. 14
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Here we see that the significant contributions to the transition time come from x2 ,
x3 and xe . x2 is the time spent in rising along the diode characteristic, xb is the time
spent turning the characteristic's maximum, while xe is the time spent descending along
the characteristic into the equilibrium point. Of the smaller contributions x! , x4 and
x5, the time spent in moving along the horizontal portion of the trajectory is as expected,
the least important. Notice that for small e the transition time is constant.

Acknowledgment. The author is grateful to S. Ganzell and R. Sibner who par-
ticipated in the numerical evaluations of the transition times which are displayed here.
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