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THE BUCKLING OF A FREE EDGE OF AN AXIALLY-COMPRESSED
CIRCULAR CYLINDRICAL SHELL*

By
W. NACHBAR AND N. J. HOFF

Stanford University, Stanford, California

1. Introduction. It is well known that the classical theory of the stability of thin-
walled circular cylindrical shells subjected to uniform axial compression yields critical
stresses which amount to two to four times the buckling stresses observed in experiment.
This is the reason why non-linear theories [1, 2]f have been developed during the last
twenty-odd years. It is also common knowledge, at least among experimentalists, that
buckles always form along the loaded circular edges of a thin-walled cylindrical specimen
before any deformations can be observed in the remainder of the specimen unless the
edges are reinforced by stiffeners or are cast in a metal plate. The early buckling of the
edges is usually attributed [3] to inaccuracies of the test set-up in regard to edge support
-and load application. Finally the buckles of the classical theory cover uniformly the
entire surface of the cylinder while the experimental buckles are always rapidly at-
tenuated.

In the present paper the classical linear equations are solved for free-edge boundary
-conditions. The results are in much better agreement with experiment than the classical
solution. In particular, the critical stress is 37 percent of the accepted value, the circum-
ferential wave length is in reasonable agreement with observation, and in the axial
direction the displacements are attenuated rapidly. The authors do not maintain that
the axial loading of free edges as stipulated in the present paper is a true representation
of the conditions prevailing in the usual laboratory test; but neither is the customary
simple support condition a true representation. At any rate, the present study explains
why the loaded circular edges of the shell buckle before the rest if they are not reinforced.

A similar buckling theory for axisymmetric deformations was presented by one of
the authors in his von Karman 80th Anniversary Lecture [2]. The possibility of edge
buckling under a low critical stress occurred to him when he studied the dependence of
the influence coefficients of thin-walled spherical shells on the internal pressure as
derived by the other author [4]. The axially-symmetric buckling of the axially-loaded
free edges of thin-walled circular cylindrical shells was found to take place at one-half
the conventional value of the critical stress.

2. Formulation of the problem. The classical equations governing the displace-
ments of the midsurface of the shell from a state of uniform compression will be used in
a non-dimensional form. The present version of the equations is based on the simplifi-
cations suggested by Donnell [3]. A non-dimensional small parameter e* and a character-
istic length ae*1/2 are introduced. Their definitions are

e* a h/2a[3(l - v2)}1/2, (la)

ae*1/2 = [12(1 - v)Ti/4(hay/2, (lb)

*Received January 8, 1962. This work was performed at Stanford University with the sponsorship
of the National Aeronautics and Space Administration under grant NsG.93-60.

fNumbers in square brackets refer to the references at the end of the paper.
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Fig. 1. Cylindrical shell: dimensions, coordinates, displacements and loads.

where a is the radius of the midsurface of the cylinder, h the wall thickness and v is
Poisson's ratio. With x* and f* denoting the axial and circumferential coordinates
(see Fig. 1), and u*, v*, w* the displacements of a point on the midsurface from the state
of uniform compression, the non-dimensional quantities used in the equations are
defined as

x - x*/ae*1/2, v = <£>*/«*1/2, (2)

u - u*/at*'/2, v = v*/at*1/2, w = w*/a.

The initial uniform axial stress is ax0 . It appears in the equations implicitly in the
form of a stress ratio p defined as

P = o\roAci = <rx0/2 t*E, (3)

which is the ratio of the uniform applied axial compressive stress to the critical stress
<rcl of the classical theory for simply supported edges {E is Young's modulus.) Use is
also made of a non-dimensional stress function / related to the conventional stress
function F* for the stress resultants [1] by the equation

/ = e*p/ + F*/a\*Eh. (4)

The equations governing the non-dimensional displacement w are

V4u> = -2pw.xx + /,„ , (5)

V4/ = -w,xx , (6)

V2( ) s ( ),„ + ( ),„ . (7)

The non-dimensional axial and circumferential displacements u and v are determined
by the equations

V4u = vw,xxx — w,xvv , (8)

Vv = (2 + v)w,xxr + w,vvv . (9)

For the present investigation, expressions are needed for the stress resultants and
stress couples acting upon the circular edge of the cylindrical shell cut by a plane normal
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to the x* direction. The relevant quantities are the axial normal stress resultant N*x ,
taken as positive in tension, the shear stress resultant N*v directed along the edge of
the midsurface, the transverse shear stress resultant Q*x , the bending stress couple M*
and the twisting stress couple M*v . The well-known [5] expressions for these stress
resultants and stress couples become with the present notation

N* = Eh[f,vv — 2e*p], N*v = —EhJ,xv> (10a, b)

M* = —Ehat*(w,xx + vw,vv) (10c)

M*v = Ehae*( 1 — v)w,xv (lOd)

Q* = -Eht*w\w,xxx + w,xvv) (lOe)

The expressions for T* and S* , the total edge resultants, become with the present
notation

T* = ~ = ~Eht*u\w,xxx + (2 - u)w.xrv] (lla)a o<p

S* = N*r + M%/a = —Eh[f,xv — «*(1 — v)w,IV] (lib)

The equilibrium conditions at the deformed edge of the prestressed shell will now
be derived. If it is assumed that the applied initial axial force distribution N*0 at an
edge point (Fig. 1) is maintained fixed in magnitude and direction while the edge point
undergoes a small additional displacement, then N*0 will contribute also to the shear
reactions. Consider the generic point P0 , located on the midsurface at the edge of the
shell after application of the prestress (Fig. 1). Subsequently, P0 is deformed to the
position Pi , as shown in Fig. 2a. A right-handed coordinate system at P0 is determined
by the axial coordinate x*, the coordinate z* taken along the inwards-directed normal,
and the coordinate y* taken along the tangent to the midsurface. Let the right-handed
triad of unit vectors at Pi, {ix, i„, iz J, be parallel respectively to the a:*, y*, z* directions
at P0 ■ Let the unit vector jx be tangent to the deformed generator of the midsurface
at Pi , and let the unit vector j2 lie along the inwards-directed normal to the deformed
midsurface at Pl . Then j„ is taken such that {j*, j„, jz} is a right-handed triad of unit
vectors at Px .

Love [6] has derived the linear transformation linking these two vector triads. If we
write

h = hix + Wii„ + nj, ,

h = + m2i„ + n2i2 , (12)

h = kix + m3i„ + n3i2 ,

then the components of the orthogonal transformation matrix for the cylindrical shell
become, in the present notation

h = 1, mi = v,x , nx - wjt*u\ l2 = -m, ,

m2 = 1, n2 = 2), l3 - —n, ,

m3 = —n2 , «3 = 1. (13)
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Fig. 2. (a) and (b)—Unit vector relations at an edge of a deformed Cylindrical shell.

The vector deformation from P0 to Pi is, by definition:

u*ix + v*i„ + w*i, . (14)

The unit vector jm is defined to be tangent to the edge of the deformed midsurface
at Pi (Fig. 2b). Then jm lies in the plane determined by jx and j„ ; it has been sheared
through an angle y (engineering shear strain) out of the plane determined by j„ and
j2 . We have

y = v,x+ u,r , (14)

and so jm is expressed as

jm = yjx + j„ . (15)

With the usual sign convention [5] the initial compressive force distribution is repre-
sented by the vector F0 :

Fo = —N*0ix . (16)

When the deformations w*, v*, u* take place, an additional force distribution F, may be
applied, in general, to the edge:
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F, = Ffxix + Ft.K + Ft.i, . (17)
The edge reactions must be in equilibrium with the total of the applied force distributions.
If the edge reactions are represented by the vector F as

F = JV*j. + T*j. + Stj. , (18)
then three scalar equations of equilibrium at the edge are given by the vector equation

F = F0 + F1 . (19)

The free-edge condition is the special case of Eq. (19) in which Ft is zero. The follow-
ing relation can be derived from Eqs. (12) and (13):

ix = hjx + kjy + hi, = h - v.xj„ - t*~1/2w.th • (20)

Because of Eqs. (15), (18) and (20), Eq. (19) may be written for the free-edge condition as

(Nt + N*o + yS*)l + (St - NtovJl ,
+[T* - Nt0e*-1/2w„]j, = 0. (21)

When substitution from Eqs. (10a, b) and (11a, b) is made, three scalar equilibrium
equations are derived from Eq. (21):

f.rv = 0, (22a)

f,xv - e*(l - v)w.xv + 2t*Pv.x = 0, (22b)

w.xxx + (2 — v)w,xvv + 2 pw,x = 0. (22c)

In deriving Eqs (22), use was made of the identity N*JEh = —2 e*p, and it was assumed
that e* > 0. Moreover, the term y[f,xv — e*(l — v)w,xv] was neglected in Eq. (22a);
this is consistent with the linearization of the Donnell equations.

The free-edge condition also prescribes M*x = 0, and it follows from Eq. (10c) that

w.xx + vw,vv = 0. (23)

3. Solution of the Buckling Problem. The boundary-value problem considered
is that of a thin-walled shell (e* <5C 1) of finite length L*; the non-dimensional length L
is defined as

L = L*/irae*U2 (24)

Equations (5) and (6) are to hold for 0 < x < tL, and free-edge buckling Equations
(22a, b, c) and (23) are to hold at x — 0 and at x = irL. These equations hold for all <p,
and solutions are required to be periodic in <p with period 2x/ e*1/2. This problem is
homogenous. Non-trivial solutions are sought where / has the form ("take the real
part" is understood)

f(x, <p) = C exp [px + JzAvV] • (25)
C and p are complex numbers, i is the imaginary unit, n is an integer which is the number
of complete waves in the circumferential direction, and A = 4t*n2. It then follows from
Eqs. (6) and (25) that w must be of the form

w(x,<p) = -(p2 - A/4)2p'2f(x,<p) (26)
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Equations (25) and (26) satisfy Eq. (5) only if p is a root of

(p2 - A/4)4 + 2pp2(p2 - A/4)2 + p4 = 0. (27)

It was shown in an earlier paper [7] that, for A > 0 and p2 < 1, Eq. (27) has four distinct
roots with negative real part. These roots are called pK , K = 1, 2, 3, 4. If the bar is
used to denote the complex conjugate, the four roots are:

Pi = ~ + i& 1 , Vi = ~«2 + i&2 , Ps = Pi , Pi = P2 ,

<*i = 2^75 [(c — p + A)1/2 + (1 — p)1/2],

Pi = — 2372 [(1 + p)1/2 + (c + p — A)1/2],

= 2^72 [(C - P + A)1/2 - (1 - p),/2],

02 = gS/s [(1 + p)!/~ — (c + p — A)1/2],

c = +[1 - 2pA + A2]1/2. (28)

There are also four distinct roots of Eq. (27) with positive real part.
It will be assumed that L is large enough so that the amplitude of w in the edge-

buckling solution of the boundary-value problem decays to a relatively small value
within a non-dimensional distance from an edge small in comparison to irL/2. The validity
of this assumption for shells of practical dimensions is apparent from the edge-buckling
solution obtained below (see Fig. 4); this is further discussed in [8]. With this assumption,
only that portion of the solution which has the edge x = 0 as its boundary, and which
decays for positive x, need be considered. The problem is then mathematically equivalent
to the problem of the semi-infinite shell, and / and w can be represented as the following
linear combinations of the exponential solutions in Eqs. (25) and (26), the CK , K =
1, 2, 3, 4, being arbitrary complex constants:

fix, <p) = [± C^]e(i/2)A"^, (29)

w(x, <p) = -[£ CK{p\ - A/4)2p*y**]e(i/2)A,/*- 30

A representation must also be found for v(x, <p) in order to evaluate Eq. (22b). This
follows from Eqs. (9) and (30) :

v(x, v) = iA1/2|E Ck[(2 + v)pl - A/4]pl?e°«'yi/2)Kl"v. (31)

If the expressions from Eqs. (29), (30) and (31) are used in Eqs. (22) and (23) at
x = 0, the four linear algebraic equations that result are:

A £ CK = 0 (32a)i
4

A' = 1
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A1/2 i: CkVk{ 1 + e*(l - v)(Vk ~ K/*)2Vk - 2e*p[2 + , - A/(4j>J)]} = 0 (32b)
^ K~ 1

53 1(2 p)A + 2p](pA- A/4) Pa- J — 0 (32c)
K-l

E C*(pi - fcA)(pi - A/4) V = o (32d)
K-l

Equations (32) are further simplified through use of the following identities [7]:

(j>k — A/4)2pA-2 = -p + «Vl — p2, K = 1 and 2. (33)

The absolute value of the right-hand side of Eq. (33) is unity for all p in the interval
p2 < 1. Since t* « 1, then the terms in curly brackets in the sum of Eq. (32b) can be
approximated as

1+§T' K- 1,2,3,4.

The second term above is negligible in comparison with unity unless either e*A becomes
of order unity or p£ becomes small. The first situation implies A » 1 (w of order e*"1).
The edge-buckling solution obtained below and the experimental evidence [8] both
show that A is not in this range of values at buckling. Therefore, it can be assumed that
e*A is of order «*. The second situation is considered further, since | p\ | and | pi | tend
towards zero as A tends towards zero for all p2 < 1. This behavior can be deduced from
Eqs. (28), or, more directly, from Fig. 1 of [7], from which it can also be observed that
I p\ | and | pi | remain bounded away from zero as A tends towards zero.

An expansion of p2 about A = 0 has as its first term

Vi = ^ _ P^/2 ^ p)V2]' A « 1, (34)

so that for small A

e*PA ^ 8e^p = 2p
2 \p\ \ A n2 (35)

Since p is at most unity, then, if n is greater than 4, the term on the right of Eq. (35) is
negligible compared to unity. It is expected that the solution will be such that n satisfies
this condition; an equivalent condition is also a requirement for the validity of the
approximations involved in the derivation of Eqs. (5), (6), (8) and (9).

Therefore, for sufficiently small e*, all terms involving e* in Eq. (32b) can be neglected.
The boundary-value problem is then only implicitly dependent on e* (p and A are
functions of e*). With these simplifications, Eqs. (32) can be written in the following
matrix form for A > 0:

1111

Pi Pi Pi P2

&i bt b2 b2

-01 9l 02 §2-i

"Ci

C3

C2

CY

= 0 (36)
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Expressions for the elements in the last two rows of the matrix, as determined from Eqs.
(28) and (32), are written in the form

bi = bn + ib12 , b2 = b21 + ib22 , ffi = ffxi + igi2 , g2 = <721 + ig22 ,

where:

bn = [-1(1 - f)A + 2p][pa, — (1 — P2)1/2/3j]

+ 2_1/2(1 - p)1/2(l + 2p)(a\ - fi) - (1 - 2p)a1/3121/2(l + p)1/2 (37a)

= -[-i(l - ")A + 2p][(1 - P2)1/2a, + pft]

- 2"1/2(1 + p)1/2(l - 2p)(«! - tf) - (1 + 2p)«1/?121/2(l - p),/2 (37b)

621 = [—1(1 — v)K + 2p] [pa2 — (1 — p2)1/2ft>]

- 2~1/2(1 - p)1/2(l + 2p)(aj - /32) + (1 - 2p)a2/?221/2(l + p)I/2 (37c)

622 = —[—1(1 — v)A + 2p][(l — p2)1/2a2 + pp2]

+ 2~1/2(1 + p)1/2(l - 2p)(a2 - + (1 + 2P)a2&2,/2(l - p)1/2, (37d)

*1 = -1(1 - ")Ap - (1 + 2p)a12~1/2(l - p)1/2 + (1 - 2p)ft2"1/2(l + P)1/2, (37e)

?12 = 1(1 - v)A(l - P2)1/2 + (1 - 2p)a12~1/2(l + p)1/2 + (1 + 2p)/?12"1/2(l - P)1/2, (37f)

(hi = -1(1 - ")AP + (1 + 2p)a22_1/2(l - P)1/2 - (1 - 2p)/322~1/2(l + p)1/2, (37g)

?22 = 1(1 - f)A(l - p2)1/2 - (1 - 2p)a22"1/2(l + P)1/2 - (1 + 2p)ft2"1/2(l - p)1/2. (37h)

The matrix of Eqs. (36) is further transformed into a real-valued matrix by application
of identities, the first of which is

b1C1 + bxC3 - bniC, + C3) + ib12{Cx - C3). (38)

The resulting set of equations is as follows:

10 10

—ax 0x —a2 fi2

bxx b12 b2i 622

9n Q12 ?2i Q22

' Cx + C3

i{Cx - C.)

C2 + Ct

i(C2 - C4)J

0 (39)

The determinant of the matrix of Eqs. (39) is called A. For a given value of v, A
is a function of p and A only, and values of p and A for which A vanishes will determine
the stability boundary for edge buckling. For arbitrary p and A, A is algebraically
complicated, and it is determined numerically without further algebraic simplification.
A convenient numerical scheme is to fix a positive A and to determine the zeros of A
as a function of p. Five such numerically-calculated zero points are shown as circled
values in Fig. 3. It appears that A has two simple zeros for each positive A. It is assumed
that only the lower branch of the curve in Fig. 3 is of physical significance as the stability
boundary; the equilibrium of the shell for p-values above this lower line is assumed
unstable.
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Fig. 3. Critical stress ratio p vs. lobe number parameter A for edge buckling of a semi-infinite cylindrical
shell with a free edge under uniform axial compression (v = 0.3).

If A is small, a simple, closed-form expression for A is found [8] by expanding the
previously stated expressions for the elements of A into power series in A. After con-
siderable algebraic manipulation, the following approximate expression, valid for
0 < A2 <K 1, is obtained:

A = (4^) | {(1 - 2p)2 - | [(-2 + iv + 2i?) + (3 - 2, - p")2p] + 0(A2)} (40)

For A > 0, the roots of A are given by Eq. (40) as the following curve:

A = (-1 + 2v + v) + (3 - 2v - vYp f°r A <<: 1 ('41-)

This curve is shown in Fig. 3 for v = 0.3 as solid for A < 0.25 and as dotted for A > 0.25.
The remainder of the solid line passes through the circled values and is taken to be the
correct lower branch of the curve for A > 0.25. The minimum value of p along this
branch is computed from the portion of the curve shown to be p = 0.37 at A = 0.32.

The mode shape for edge buckling is now calculated. Since the amplitude of w(x, <p)
is indeterminate, and since the problem is invariant under a rigid-body rotation about
the z-axis, we set w(0, 0) = 1. The mode shape w(x, 0) for x > 0 is found by taking the
real part of Eq. (30). If the real numbers wn , ■ ■ ■ , w22 are defined as

Wi = [~ p + i( 1 — p2y/2]e'"lX = Wn + iw12 (42a)

w2 = [— p + i(l — p2)1/2]e,'J** = w21 + iw22 (42b)

and if a real-valued column vector {BK} is defined as

{#! ,B2,B3 ,S4} = Re {C1 + C3 , i(C1 - C3), C2 + C4 , i(C2 - C4)}, (43)
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then it follows from Eqs. (30) and (38) that

w(x, 0) = —{Re [C^Wi + C3w^\e~aiX + Re [C2w2 + Ciw2\e'°"x}

= —{(BiWu + B2w12)e a>' + (B3w2i + B4w22)e ""*}

= e~a,x[B1(p cos PtX + {1 — p2}I/2sin /Sjx)

+ B2(p sin ^x — {1 — p2}1/2 cos ^x)]

+ e~a"[B3(p cos I32x + {1 — p2}1/2 sin f}2x)

+ Bt(p sin (32x — {1 — p }1/2 cos /32x)]. (44)

When p and A are on the stability boundary, then there will exist column vectors
{BK} which satisfy Eqs. (39). Using the normalization condition derived from Eq. (44),

w(0, 0) = ~{B2 + S4){ 1 - P2j1/2 = 1 (45)

and the first of Eqs (39),
B, + B3 = 0, (46)

we derive the following expressions Bl and B2 from the second and fourth of the Eqs. (39) :

D (-I   2\ —1/2  Q22) .922(^1 ~ ^2)  (A7a\

1 U P) (aa - ai)(g12 - g22) - (ft - ftjfou - gn) ' ^ ;

n _ /i _ 2\—1/2 S22(ct2 ~ «i) ~ ff2(gn ~ <72i) ("4.7K1
2 P (a2 a1)(g12 - g22) - (/?, - p2)(gii - 021)

Edge buckling for v = 0.3 occurs at p = 0.37 and A = 0.32; functional values are
calculated from Eqs. (28) and Eqs. (45), (46) and (47) to be

<*2 = 0.051, By = 0.160, B3 = -0.160,

I32 = 0.064, B2 = -0.190, Bt = -0.886.

Fig. 4. Lateral displacement w in free edge buckling as a function of axial coordinate x (v = 0.3).
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Equation (44) takes the following form for these values:

w{x, 0) = e-°-611I[o.234 cos (0.762a:) - 0.079 sin (0.762a;)]

+ g-°-051*[o.766 cos (0.064a;) - 0.477 sin (0.064a)]. (48)

Equation (48) is plotted in Fig. 4.
Acknowledgment. The authors are grateful to Mrs. Wen-Yi Shih Pi who checked
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