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ON “TRANSCRITICAL” AND ‘“HYPERCRITICAL” FLOWS
IN MAGNETOGASDYNAMICS*

BY
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Introduction. A category of magnetogasdynamic flows that has attracted con-
siderable interest involves the steady motion of a perfectly conducting, inviscid, com-
pressible fluid with magnetic field everywhere aligned with the flow direction. This
type of flow must result if the magnetic field and flow direction are aligned anywhere in
plane and axially symmetric configurations. It is clear that such flows are isentropic, or
in the case of flow from a uniform state, homentropic.

The system of equations governing motion in this category may be either elliptic
or hyperbolic, depending upon the local values of the Alfvén number, 4, and the Mach
number, M. The Alfvén number is defined here as the ratio of the flow speed to the
propagation speed of Alfvén waves, while the Mach number is the usual ratio of flow
speed to the speed of sound in the absence of magnetogasdynamic effects. These elliptic
and hyperbolic regions were first exhibited by Taniuti [1] in a diagram similar to Fig. 1,
and later by Kogan [2] and Resler (see Sears [3]). There are two regions where the equa-
tions are hyperbolic, one of which is subsonic, sub-Alfvénic (A < 1), the other being
supersonie, super-Alfvénic (4 > 1). In these regions the proper family of characteristics
must be chosen. Sears [4] has pointed out that for the subsonic case waves which propa-
gate upstream are the correct choice, while in the supersonic region it is the usual down-
stream-propagating waves.

Along PR, where A®> 4+ M?® = 1, the propagation speed of small magnetosonic dis-
turbances vanishes. The elliptic region OPR where the velocity is less than the propaga-
tion speed will be referred to as subcritical. The subsonic, hyperbolic region PRQ where
the velocity is greater than this speed will be called supercritical. Near PR the flow will
be termed hypercritical. Note that both transonic and trans-Alfvénic flows are, under
this nomenclature, transcritical.

McCune and Resler [5] have derived the linear theories for this type of flow. Just
as the results of ordinary linearized gasdynamics become invalid in the transonic regimes,
McCune and Resler’s results break down in the transonic, trans-Alfvénic and hyper-
critical regimes. The object here is to study the flow in these regimes where the motion
is fundamentally non-linear and the non-linear terms of the equations must be retained.
Of particular interest is the hypercritical regime where elliptic flow joins with hyperbolic
flow having forward-facing characteristics.

It is found that for the flow under consideration the hodograph transformation
can easily be effected, the result being two second-order, linear, partial differential
equations analogous to Chaplygin’s equation and the potential equation for ordinary
compressible flow. Two elementary solutions of these equations, corresponding to source
and vortex motion, are discussed. One displays smooth transition through the hyper-
critical and trans-Alfvénic regimes. Separation of variables is possible, and the resulting
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ordinary differential equations are discussed briefly. In the special case where the ratio
of specific heats, v, is 2, the equations are of the Fuchsian type with five singularities.

Equations of motion. The equations governing the steady flow of an ideal conductor
in the presence of a steady magnetic field are

div pq = 0, (1)

grad ¢°/2 — qX curl q + (u/47p)HX curl H + (grad p)/p = 0, @
divH = 0, 3)

curl (g X H) = 0, 4)

q-grad S = 0, (5)

where p, p, S, p are the pressure, density, entropy and magnetic permeability, and q
and H the velocity and magnetic field vectors. In plane flow, Eq. (4) requires that
q X H be constant; thus if ¢ and H are parallel anywhere (e.g., at infinity), they are
parallel everywhere. This can be expressed as

rq = fH, (6)

where f is some scalar function. Equations (1) and (3) then give f = f(¢), where ¢ is
the stream function. Substituting Eq. (6) into (2), forming the scalar product with
q, and noting Eq. (5) gives Bernoulli’s equation

/2 + f dp/p = constant @

along a streamline. Assuming uniform conditions at infinity, f becomes constant, the
flow is homentropic, and Eq. (7) holds through the flow. Combining the gradient of
Eq. (7) with Eq. (2) and (6) then yields

curl 1 — A7%q = 0, ®

where A denotes the Alfvén number, (4p/ w)lq/H.
The characteristics for this system, first given by Taniuti [1], can be expressed in
the form

a[A* + M? — 1][(d)® + (dy)"] = A’[udy — v da]’ )
in the physical plane, and
M — D[A* 4+ M = 1]udv + v du]® = (A% — Dudv — v du]’ (10)

in the hodograph plane, where a® denotes dp/dp and M, q/a. From Eq. (10) the diagram
in Fig. 1 can easily be deduced. Equation (9) shows that as A*> + M? — 1, the character-
istics become parallel to the streamlines, and as A — 1 or M — 1, they become per-
pendicular to the streamlines.

Hodograph transformation. Equation (8) suggests the introduction of a potential
function, ¢, such that

grade = (1 — A7)q.

With this equation, the usual definition of the stream function, Bernoulli's Equation (7),
and the continuity Equation (1), the transformation to the hodograph plane can be
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effected in a manner identical to that for the analogous equations in ordinary compressible
flow (see e.g. von Mises [6]). The first-order, linear, differential equations

b _ A gy (11)
80 A*(A*+ M°—1)p dq’
dp _ (M* —1)(A* — 1) 8y

are the result, subject to the condition that the Jacobian of the mapping does not vanish.
In terms of ¥ alone this requires that

_ =z, [ 2 ( )2 (A =1 (N) ]
I‘a(q,a) 0°’¢ M7 = D36 A* 4+ M*® — 1 \aq 0. (13)
Limit lines, i.e. curves on which I = 0, can occur only in the two hyperbolic regions.
In contradistinction to ordinary compressible flow, the Jacobian

Aoy ¥) L (47— 1)
D=%q 0= a1

can be zero even though I is not zero. This is a result of the definition of ¢ for this flow.
Elimination of the potential function from Eqgs. (11) and (12) gives, for a perfect gas,

[A2+M2 — 11* 8%y
qT 06°

2 2 2 a2¢
ar -1 — (- D+ M -1 3Y
(14)
1dy
q 9¢q
which reduces to Chaplygin’s equation in the limit of no magnetic field, A — «. The
equation for ¢ alone is

—{Q+M)(4* - 1)) = M'y(4* = 1) + 1 = 34°]} === =0,

2 2
-y W= NP ey -1 T

e (15)

+ [0+ A4 = 1)+ 28— D] 55 = o.
To return to the physical plane the following coordinate relations are required

_1]_ 4 sin 6 :|

dx = p I:—-Az — 7 °08 0dp — ——dy (16)
dy = ; [c"s Ody + AZA_ sin 6 d¢:| 17)

Elementary solutions. Equations (14) and (15) have the “elementary”’ solutions
¥ = K6 and ¢ = K0, where K is a constant. The corresponding solutions in the physical
plane could have been obtained directly from Egs. (1) and (8), without recourse to the
hodograph transformation.

The first of these solutions, which might be termed ‘“magnetic-source” flow, has
a two-fold mapping to the physical plane and the limit line M = 1. Along this line the
two solutions, one subsonic and the other supersonie, join. These are depicted in Fig. 1
by the curves Ia and Ib. The arrows indicate the direction of increasing radius. Equa-
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Fi6. 1. Diagram of elliptic and hyperbolic regions of flow.

tions (16) and (17) give the coordinate functions z and y, which are identical to the
non-magnetic results and will not be given here (see e.g. [4]). The subsonic flow, Ia, which
undergoes smooth transition through the hypercritical and trans-Alfvénic regimes,
is shown in Fig. 2.

The second solution, a ‘““magnetic-vortex”” flow, has the limit line A*> + M* = 1 and
the coordinate function

__KA*
q(4* = 1)
In this case the mapping to the physical plane is threefold, the flows being indicated

in Fig. 1 by the Curves IIa, IIb, and IIc. One set of flows joins at the limit line, the
other at a branch line 1/I = 0. The flow corresponding to IIb is shown in Fig. 3.

r=@"+y)""==x

The special case y = 2. Assuming a solution to Eq. (14) of the form ¢ = f()F(r)
results in

f= ™ + e (18)

and a second-order, linear, differential equation for F, where r = ¢*/q}s.. and k is the
separation constant. The coefficients of this equation are, in general, complicated alge-
braic functions of 7. With v = (n 4+ 1)/n, n a positive integer, the coefficients become
polynomials in 7, the degree of which depends on 7. In the simplest case » is 1 and the
equation for F becomes

4 (r—p)" dF|_ 3k (r—p01 =37, _
dT I:(T - 3/3)(7 - 1) dT:I + 4 T(T — 1)2 F O; (19)
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F1c. 2. Streamlines and characteristics for “magnetic-source’” flow.

where 1 — 8 = A’ evaluated at + = 0. Here there are five singularities, all regular,
and thus the equation is of the Fuchsian type. In terms of the extended Riemann
P-function [7],

0 /3 B 1 o
F=P|—k/2 0 0 0 —3k/2 7|. (20)
+k/2 2 —1 2 +3k/2

The singularities 8/3 and 8 correspond to A* + M* = 1 and A* = 1 respectively. Results
analogous to Eq. (18), (19) and (20) may also be obtained for the potential function.
They are more complicated in that the exponents at two of the singularities are func-
tions of 8.

An interesting conclusion can be drawn in this case with regard to the flow behavior
as A* + M® — 1. The singularity at - = 8/3 can be shown to be apparent, and therefore
both solutions are analytic about this point. This insures further that I will be bounded
and generally non-zero. In the hypercritical regime then, for v = 2, the flow behavior
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F1G. 3. Streamlines and characteristics for “magnetic-vortex”’ flow.

must be smooth. On physical grounds it might be conjectured that this will hold for
other values of v. In contrast, 0 and 1 are the only real values of k£ for which r = 1 is
an apparent singularity.

It is possible to solve Eq. (19) in terms of rational functions of r for particular values
of k. The procedure is too lengthy for presentation here. For k = 1, the two solutions are

1
F = 11/2(1_ _ B)
and
F= 7’27 — B+ 3)r + 26].

T =8

Solutions of this class should provide insight into the flow behavior in the hypercritical
regimes analogous to that obtained from the solutions of Ringleb [8] or Temple and
Yarwood (see [9]) in ordinary gasdynamics.
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In the limit 8 — 0 Eq. (20) reduces to the Riemann P-equation with the solution

F = ‘r[-l+(l+3k’)‘/’]/2

2\1/2 221/2
(—1 — 3k +2(1 + 3k%) ’ -1+ 3k +2(1 + 3%?) 1+ 3k T)

‘R

where R is the hypergeometric function. For £ = 1 a solution is
¢ =1"sin0, =71 —1""cosb.

Since 8 = 0 the motion is entirely super-Alfvénic. The limit line and streamlines are
similar to those of Ringleb flow.

Conclusion. Through this investigation the existence of smooth flows in the
transonic, trans-Alfvénic, and hypercritical regimes has been determined. The flow
behavior in the hypercritical regime will generally be regular for the special case y = 2.
The new and interesting phenomena associated with the flow of a highly conducting
gas in the presence of a strong aligned magnetic field have been exemplified in two

simple solutions.
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Note added in proof. The details of the flow y = 7%+ — 8)™! sin 8 have been studied by the author
and some results were presented by Prof. W. R. Sears in his paper Some paradozes of sub-Alfvénic flow
of a compressible conducting fluid at the Symposium on Electromagnetics and Fluid Dynamics of Gaseous
Plasma, New York, N. Y., April 1961.

The author’s attention has been called to two earlier papers in which equations equivalent to
Egs. (11) and (12) were given; viz.,

I. M. Tur’ev, On the solution of the equations of magnetogasdynamics, Prikl. Mat. i Mekh. 24, 168 (1960).
K. Hida, Hodograph method for treating the flow of a perfectly conducting fluid with aligned magnetic field,
Preprint from 5th Meeting on Mechanics and Applied Mathematics, at Matsuyama, Japan, (1960).
In the latter reference the solutions ¢ = k6 and ¢ = k6 were also pointed out.



