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SCATTERING OF A COMPRESSIONAL WAVE BY A PROLATE SPHEROID*
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I. Introduction. In order to estimate the size of damaged regions produced in
single crystal silicon samples by collimated neutron irradiation, Truell [1] utilized a
multiple scattering of elastic waves calculation made by Waterman [2] to interpret
ultrasonic attenuation and velocity measurements. The multiple scattering calculation
assumes a distribution of spherical scatterers and requires detailed knowledge of the
scattering behavior of a single scatterer embedded in an infinite, homogeneous, isotropic
medium. The problem of scattering by a single spherical scatterer of a plane compres-
sional wave which propagates in such a medium has been studied recently by Ying and
Truell [3]. The analogous problem of scattering of a plane transverse wave has been
solved by Einspruch, et al. [4].

Examination of the single scatterer calculations reveals that the process in which
a portion of the energy in an incident compressional wave becomes transferred into
energy transported by a scattered shear wave (i.e. mode conversion) is a process of
higher order; the transfer of energy from an incident compressional wave to a scattered
compressional wave dominates mode conversion. The equivalent statement for scattering
of a shear wave holds as well. Since mode conversion can be regarded as a perturbation
to the scattering process, an approximate description of scattering of a compressional
wave can be made by replacing the elastic medium in which the scatterer occurs by a
compressible fluid (i.e. acoustic) medium.

Since radiation damage in solids [5] frequently occurs as highly localized regions
which are non-spherical, a prolate spheroid may prove to be a more accurate repre-
sentation of the shape of a damaged region than a sphere. This is the motivation for
the solution of the problem presented here.

In the work of Ying and Truell and of Einspruch, e al. the normalized scattering
cross section of a spherical obstacle which was a cavity or a mismatched elastic medium
was found to depend on (Ka)* (K = 2x/\; A = wavelength of incident wave; @ = radius
of scatterer) in the Rayleigh limit (Ka < 1). In the case of scattering by a rigid fixed
sphere, the normalized scattering cross section was found to depend on the sum of a
frequency and size independent term and a term which varies as (Ka)*. Since one would
expect the scattering cross section to vanish in the limit of large wavelengths, the rigid
obstacle is probably a poor choice of model for the description of the actual physical
situation.

The problem of scattering of a plane compressional wave by a rigid prolate spheroid
has been solved by Spence and Granger [6]. In the present paper, solutions to the prob-
lems of scattering by a soft acoustic scatterer and by a small acoustic scatterer of
arbitrary properties are presented.

II. Theory. The definition of the prolate spheroidal co-ordinate system is

z = fecosg[(¥ — DA — )],
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Fic. 1. Prolate spheroidal co-ordinate system.

y = fsing[(® — DA — ],
z = ft,

where f is the semifocal distance, 0 < ¢ < 27,1 < ¢ < o, —1 < 9 < 1 (see Fig. 1).
The mathematical problem is to find solutions of the scalar Helmholtz equation
VY + Ky =
within and external to the scatterer which satisfy the boundary conditions at the inter-
face between the scatterer and the surrounding fluid medium; ¢ is the velocity potential
function; simple harmonic time dependence is assumed throughout this discussion.
The incident wave is a plane wave of unit amplitude with wave normal in the zz

plane at an angle ® with the positive z axis. The expansion [7] for the velocity potential,
¥, , for the incident plane wave is

i=2 Z > G T = (1) S (c08 O)RSI(E) cos ma, (1)

=0 m=0
where
R = radial function of the first kind
S = angular function of the first kind
N,; = norm of S,.;

. ='{1,m=o
" 2,m#0.

A thorough discussion of the properties of the prolate spheroidal co-ordinate system
and the associated wave functions can be found in the text by Morse and Feshbach [7].

The radial and angular functions depend on the parameter Kf; wherever it is con-
venient, this parameter is supressed. The potential function for the wave scattered by
the obstacle must satisfy the Helmholtz equation, the boundary conditions, and the
radiation condition
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K
v, — 1(6,¢)
f(6, ¢) is the scattering amplitude.
‘The potential function for the scattered wave is constructed as follows

=232 20" 7 AuSumRLE cos mg, @

where

A,.; = expansion coefficients

R® = radial functions of the third kind.
The A,,; are determined by the boundary conditions at the surface of the scatterer.

III. Scattering by a soft obstacle. Since a soft obstacle will not support a pressure,
the boundary condition which must hold at the interface between such an obstacle and
the fluid in which it occurs is

¥: + ¢. =0, E=4§&

since the pressure produced by each wave is p 3y/d¢, where p is the density of the medium.
This boundary condition yields

ItH)
An = — 8, (cos ©) Z(sigg

The phase shifts are defined as

-1 Roi(6o)

P = B R

where
R‘?, = radial functions of the second kind.
The expansion coefficients are thus given by

A, = —isin 8,6 "' S, (cos ©).

Since

iKr

(3) — 1+m € c
le(;) ,:: ’L( i) Kr

and at large r

n — cos 0

16, ¢) = Z Z (—z)"‘ s1n 81 €XP (—18,;) €OS MBS, (cos ©)8,.; (cos 6).

I=0 m=0

The total scattering cross section, ¢, is defined as

¢ = f:' fo | 1(0, )|” sin 6 40 dg.
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The integration yields
= _7; Z E N lsm 8n1[Smi (cos ©)1;

this expression is exact for all wavelengths.

In the short wavelength limit

1 l + m
RV)(Kf, £) v K—ﬁsm (Kff - 1")

and
(2) ___1 —_ —l
R(KY, §) K—)f_m - K cos (Kfs B 7r),

consequently

6,,,1 i —(Kfo_l-l-mﬂ').

Kf-o 2

The total scattering cross section is thus given by

2 n [Sn: (cos ©)] sin® (ngo -;mﬂ_)

Q
]
g
...Ma

In the long wavelength limit

S, (cos ) — P7 (cos 6)
Kf—0

and

2 A+ m!.

Nov = i 1 —ml

where the P (cos 6) are the associated Legendre polynomials.
The total scattering cross section is thus given by

z_% mz_:,) 2z ;_ 1 8 T m;' ensin® 6, [P7 (cos 6)]°.

IV. Scattering by an obstacle of arbitrary acoustic properties. In the problem
considered in Sec. III, the common technique of equating the coefficients of the angular
functions which appear in the equation derived from the boundary conditions was used
to evaluate the expansion coefficients. In the case of the soft scatterer, no wave is excited
within the scatterer; hence the only waves which propagate are external to the scatterer.
In the prolate spheroidal coordinate system, the wave number appears as a parameter
in the angular functions as well as in the radial functions. Consequently, the technique
utilized previously is not applicable if a wave propagates within the scatterer except
in the Rayleigh limit, as shall be demonstrated.

The solution for ¢ > £, is the sum of the incident wave, Eq. (1), and a scattered
wave analogous to Eq. (2).
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©

V=23 20 3 = Sui(Ks, €08 ©) S (Ky, MER(K, £) cos mp
l=

0 m=0

=2 IZ: E ON e"' AmlSmI(K2; DR/(K,, £) cos me,

in these and the following expressions the dependence on the wave number is indicated.
Subscript 2 indicates a property of the outer medium; subscript 1 indicates a property
of the scatterer.

For ¢ < &, , the solution is given by

23 X6 N = BriSmi(Ky, MR, ) cos mo.

1=0 m=0
In the Rayleigh limit
¥ — 2 2 > G NPT (cos OPI(mR YIS, §) cos mp 3)
Kaf—0 1=0 m=0

and similarly for ¢, and ¢, .
The boundary conditions which must be satisfied at ¢ = &, are continuity of pressure
and normal component of fluid particle velocity

p¥i + P = pi¥.
%-I_%:% E=4&. (4)
¢ ok o¢
Substitution of Egs. (3) and Egs. (4) and performance of the indicated operations yield
Ani = P7(cos O)[p.R (K, £)Bm) (Kyy £0) — puRot (K, 5)RGUK, £)] A7)
B,.; = P7 (cos ©)[p,R (K, EO)R(S) (K2, &) — pRG(K,, £0)R) (Ko, £0)] A7,
where
= pRA(Ky, §)R (K, £0) — pRi(Ks, £)R (Ko, &o).

The prime indicates differentiation with respect to £.
In terms of the expansion coefficients for the scattered wave, the scattering amplitude
is given by

160,9) = —% Z > (=" = = AmSu(Ks , 1) cos mg.

=0 m=0

As in Sec. III, the total scattering cross section is obtained by integrating the scattering
amplitude over a large sphere concentric with the spheroidal scatterer

ZZ lAmz I

1=0 m=0

V. Summary. In this paper the authors have solved the problem of scattering of
a plane acoustic wave by a soft prolate spheroidal obstacle embedded in a fluid medium.
An exact solution is given as well as approximate solutions which are valid in the long
and short wavelength limits. A solution is also presented for the problem of scattering
of a compressional wave by a small prolate spheroidal obstacle of arbitrary acoustic
properties. In each case, an expression for the total scattering cross section is derived.
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