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ON YIELD CONDITIONS IN GENERALIZED STRESSES*

BY
M. SAVE
Faculté Polytechnique de Mons (Belgium)

1. Introduction. Generalized stresses and strain rates were introduced in limit
analysis by Prager [1]. They were defined as the stress-type variables that appear in
the expression of the power of dissipation, the stress variables being components of the
stress tensor, stress resultants or dimensionless stress resultants. It was then emphasized
by Prager [2] that other stress-type variables exist, though not entering in the expression
of the power of dissipation because they are related to zero strain rates. These stress
variables he called “reactions,” to distinguish them from those which he called ‘“‘gener-
alized stresses.” Numerous applications of these concepts have been made up to now;
references to most of these can be found in Prager [2] and Hodge [3]. These applications
essentially concern plate or shell problems, where the generalized stresses are the stress
resultants and bending or twisting moments.

The question arises whether it is always possible to express the yield condition in
terms of stress variables entering in the expression of the power of dissipation, i.e.,
in terms of the so-called generalized stresses only. Physically, the possibility of doing
this is not obvious because the yield condition essentially involves the stresses, and one
might think that the non-zero ‘‘reactions,” because they produce in general non-zero
stresses, would enter the yield condition.

We shall show first that it is indeed always possible to express the yield condition
in terms of the generalized stresses only and, moreover, that the elimination of the
“reactions’ can be achieved automatically, by completely ignoring these ‘‘reactions.’”

Then, considering the case where one intends to obtain such a yield condition by
purely statical considerations, we shall prove a theorem that enables one to eliminate
the reactions from the yield condition in an easy and direct manner.

Finally, we shall illustrate the theorem by two examples and present some short
concluding remarks.

2. Yield conditions in generalized stresses. Let us consider stress variables
S, , 8, -+ 8, used to describe the state of stress of a rigid-perfectly plastic continuum.
In general, the yield condition in its normalised form, is

F(S:,8, -+ 8)=1; )

it is represented by a certain hypersurface in the space with the rectangular cartesian
coordinates S, , S;, --+ S, .

Let us denote ¢; , ¢; , - - - ¢, the corresponding strain rates, and suppose that we have
G=0 G=k+1,-n. @

In this case, Si.: to S, are reactions, while S, to S, are generalized stresses.

Let the rectangular axes ¢; coincide with the axes S; (¢ = 1, .-+ n). If Drucker’s
quasi-thermodynamic postulate [4] and its consequences are accepted, conditions (2)
require that the stress point be on the yield surface (1) at regular points where the
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normal is perpendicular to all S,., to S, axes or at singular points where this direction
is on or inside the cone of the outside pointing normals at neighbouring points.

The points at which conditions (2) are satisfied form a certain hypersurface that,
projected into the subspace S, , S, , --- S, , gives a yield condition of the form

@(SI,SQ,"‘S[;)=1- (3)

This projection is always possible.

In fact, the only case of impossibility would occur if at least one point determined
by (2) on the yield surface (1) would be on one of the S;., to S, axes, say S; . The pro-
jection which, strictly speaking would still be possible, would give, instead of a certain
set of 8;, S;, --- S, satisfying (3), the value S, = S, = --- =8, =0

But this case is impossible because, due to the convexity of the yield surface, this
would put the origin on or outside the yield surface, which is not admissible.

This being shown, we can call ‘“‘generalized stresses’’ the stress variables entering
in the expression of the power of dissipation or in the yield condition, denote them
by @, , Q. , --- Q. and re-write (3) as

q’(Ql ;Q27"'Qk) = 1. (3,)

The yield condition (3) can be obtained directly, ignoring completely the ‘‘reactions,”
as it was done in [5] and elsewhere.
To show this in general terms, let us return to (1) and consider the power of dissipation

D=3S8-¢i+ 8¢+ -+ 8-4q¢. (4)

The perfectly plastic continuum being inviscid, D is an homogeneous function of
order one of ¢; , --- ¢, and we can write

aD aD |
D_a—q,"q‘—}-“'_i_aq;.'q"' (5)
Comparing (4) to (5) we obtain
aD .
S,-—bz' t=1,2, --n). (6)

Equations (6) are a parametric definition of (1), the parameters being the ¢; (or
their ratios).
Now if we have conditions (2), (4) reduces to

D*=Q,-q¢i +Q:¢s+ -+ + Qu-qi

the stress variables S, to S, being generalized stresses which we denote consequently
Q. to Q. . The yield condition (3’) is given by the first k equations (6) where conditions (2)
are entered. ,
But, as only partial differentiation is used, we obtain the same relation in the g;
G=1,- - k)if we form dD/dq; (£ =1, ---k)anduseq; =0@ =k+ 1, ---n)or
if we form 8D*/dq; .
Thus, the first k equations (6) are identical to

dD*
a¢;

S; = G=1,- k. @
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Equations (7) give directly (3") under parametric form, ignoring completely all
reactions S;.; to S, .

We shall now discuss the following two points:

1. Does the normality law apply to the yield condition (3’) and, more generally,
in arbitrary linear subspaces?

2. Is it still correct to ignore ‘‘reactions’”’ when the yield condition is established
by purely statical considerations or, in other words, how can reactions be elimi-
nated from (1)?

3. Normality law in subspaces. The validity of the normality law in general

subspaces is by no means obvious and should be investigated first.

We denote by S, , --- S, all non-vanishing stress variables. The yield condition

in its normalised form is (1) where all non-vanishing stress variables enter, in general.

In the most general way, one obtains a certain simplified yield condition in a certain

subspace when there exist a certain number of relations between the stresses, say (n — k)
relations,

i(Syy - 8) =0
.fz (8, -+ 8)=0 ®)
lf'rl—lc(sl y " Sn) = 0.

If we suppose that we are able to express, by means of (8), (n — k) stresses as func-
tions of the others, Egs. (8) can be re-written

Sk+l = Sk+l(Sl ) Sz y ° Sk)

S:i+2 = Sk+2(Sl ) Sz y " Sk) (9)
Sn =Sn (SI’S2)"'SI¢)'
Introduction of (9) in (1) furnishes a simplified yield condition
\I’(Sl y * Sk) = 1 (10)

in the subspace (S, , - -+ S,).
We consider first regular yield surfaces.
The normality law, applied to the initial yield condition (1) gives the strain rates

OF =12, ---m), (11)

¢ =Nzg (@

A being a positive constant.
The normality law remains valid for the yield condition (10) in the subspace
(S, .-+ 8,) if we can write*
v

=Nz, (G=1--h). (12)

*qifori =k + 1, - -+ n cannot be obtained of course.
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We therefore have

oF ov .
-5§.-=6—S. (’L=1,"'k). (13)

On the other hand, we know that
‘I'(Sx y Slc) = F[Sl y " Sk ) Sk+l(Sl y °°° Sk)) Sn(Sl y " Sk)] (14)
Applying chain differentiation, we find

¥ _9F  OF 8.,
aS; ~ 88; " 48.,. 98,

In general we cannot expect relations (8), or their explicit form (9), to be such that
(15) reduces to (13) and so ‘‘in general, the normality law is not applicable to simplified
yield conditions.”

This law will however continue to be valid in two important cases:

a) If relations (9) have the special form

dF a8, .
+'“+8S,.'6;S.- f=1,---k). (15)

S; = K; ('L=k+1)n), (16)
where the K; are constants (such, of course, that the yield condition is not
violated).

In this case we have
98k _ 8k _ . _ 88, _
a8; — oS, =38, -0 an

and (15) reduces to (13).
b) If Si.: to S, are “‘reactions.”
In this case we have

=0 (@=k+1,---n (18)
and, applying the normality law (11), relations (8) become
oF . .
5@:—0 G=k%1,---n (19)
or, explicitly,
OF _ oF _ oF _ 0 20)

and (15) reduces once again to (13).
We may sum up our findings as follows.
“The normality law remains applicable to simplified yield conditions obtained by giving
constant values to a certain number of stress variables or by eliminating the reactions.”
Let us now turn to yield surfaces with singular points. The normality law is gener-
alized by the condition that the strain rate vector (¢;) be in the cone of the outside
pointing normals at the neighbouring points of the pointed vertex.
Equation (10) represents the cylinder with generating lines parallel to the axes of
Si+1 to S, , projecting the intersection of (1) with the hypersurfaces (8). In the space
S, , -+ S, it is the equation of the cross section of this cylinder.
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The normality law will remain valid for the hypersurface (10) if, at a pointed vertex
P of (1) that is also on (8), the projection of the cone of normals at (1) in P is the cone
of normals at (10) at the point P’ projection of P.

We consider now a pointed vertex as the limit of a very small region where the
direction of the normal varies very quickly but continuously.

Suppose that this region is bounded on the yield surface by a certain curve C, whose
limit is the point P at the vertex. When C tends to P, we can at each stage express
Eq. (13) in the following terms: the projection of the cone of normals along C are the
normals to the projection of C.

Considering the conditions of reduction of (15) to (13) and passing to the limit, we
readily extend our preceding conclusions to singular yield surfaces.

4. Theorem on the adaptation of the reactions. Let us now suppose that, among
the totality of n non-vanishing stress variables, the k first ones are generalized stresses

Q. , Q. , --- @, and the others are reactions Si+1 , Sksz, *+* S, .
We give fixed values to all generalized stresses but one, say Q.
Ql =K 1
Q2 = K2 (21)
Qk-l = K.

We obtain a simplified yield condition
‘P(Qk ) Si+1 y ° " S») = F(Kl ;Kz )yt K, ,Qk ’ Seir y S,,) =1 (22)

when we use (21) in (1).
Suppose that the yield surface is regular.
The normality law being valid for the yield condition (22), we have

G=Age  G=k+1 ), (23)

(and also ¢; = d¢/9Q, which is of no interest for our purpose).
The stress variables Si., to S, being reactions,

;=0 G=k+1,..-m). (24)
Comparing (23) and (24) we obtain,
20 (=k+1,m, (25)

because N # 0.

Equations (25) are extremum conditions for @, , considered as a function of
Si+1, -+ 8, implicitly defined by (22).

Let us note, that, as the yield surface is convex at all points, relations (25) are con-
ditions of absolute maximum or minimum.

We can then state the adaptation theorem:
“If we fix all generalized stresses but one, the reactions adapt themselves in such a way
as to give to the non-fixed generalized stress a maximum positive value or a minimum
negative value.”
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The theorem remains valid for a singular yield surface as can be readily shown:
the generalized normality law applies to the yield surface (22), and conditions (24)
determine those points on (22) where the strain rate vector is parallel to the @, axis.
If this occurs at a pointed vertex, @, assumes an extreme value at this point because
of the convexity of the yield surface, which contains the origin.

5. Examples of application. We consider a rigid-perfectly plastic cylindrical shell
without axial load, under axially symmetrical loading. As in most plate and shell prob-
lems, we suppose that straight lines normal to the undeformed middle surface remain
normal to the deformed surface during yielding. The axis 0Z directed along the normal
at a typical point of the middle surface of the shell (Fig. 1) is then a principal axis of

the strain rate tensor. Consequently, as Ziegler [6] has shown, in the case of the Tresca-
Guest yield condition as well as in the case of the von Mises yield condition, it is also
a principal axis of the stress tensor and r,, = 7,, = 0 at all levels in the thickness of
the shell. Consequently, to be consistent with the previous hypothesis, shearing forces
normal to the middle surface in a completely plastic element of the shell (or of the plate)
must vanish exactly. Moreover, we suppose ¢, = 0. We are then exactly in plane stress
conditions.

Due to the symmetry of our problem, the only non-vanishing stress variables are
M, ,M,and N, . (Fig. 2)

My &
Ne

Fia. 2

Symmetry also imposes the condition that the circumferential rate of curvature
x; be zero.

M, being then a reaction, we have to determine the yield condition in M, and N, .

1. Let us first consider a sandwich shell, obeying von Mises’ yield condition. This
shell is composed of two thin sheets, each of the thickness ¢/2, which are separated by
a core of the thickness h. (Fig. 3). The thin sheets support only normal stresses, uni-
formly distributed on the thickness.
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. .._<
Fic. 3
If we call
a4 and o,, the stresses in the top sheet
a5 and o,, the stresses in the bottom sheet
we have

( !
No = 5 (0'01 + G'Ob))

My =2 oo — ), (26)

th
M0 = Z(azt - azb)'

Introducing dimensionless stress variables

Ny M, M,
9 — ’ mﬂ_zu'oy z—]‘lo)

where Ny = g5t and My = o,4-th/2,

oo being the yield stress of the sheets in pure tension,

we get
.
N = go: + oay
o 20'0 ’
g, - g
my = ot 8b , (27)
20'0
m, = Ozt — ‘sz.
\ i 20'0
von Mises’ yield condition
2 2
os + o5 — 0,00 = 0 (28)

is shown in Fig. 4 in the (0o, , Ooy) plane. In this plane, the state of stress in the shell
is represented by a straight segment tb, coordinates of ¢ and b being respectively (ay. , 02:)
and (o4 , 025). In view of (27), coordinates of the center ¢ of &b give n, (and n,) and
projection of the segment tb on the axes give m, and m, (the positive factors 1/¢, and
1/20, do not create any trouble).

As n, = 0, the point ¢ must stay on the Os, axis. For a given position of this point
(between A and B), corresponding to a given value of n, , plasticity of the shell element
requires one point ¢ or b at least to be on the yield locus.

The adaptation theorem tells us now that the inclination of #b must be taken so
that its projection on Oc, be a maximum. This readily gives the condition
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Fic. 4

mg = 7= (29)
which moreover puts both points, ¢ and b, on the yield locus. Displacing the point ¢

from A to B and respecting condition (29), we obtain without difficulty and directly,
the elliptic relation

3mZ+n; =1 (30)
between m. and n, .
2. Let us consider the same shell, but obeying now Tresca-Guest’s yield condition.

A very similar analysis, with the use of the adaptation theorem gives the following
results (Fig. 5)

a. when 0 < ny < %,

n,g%gl—n, and m, =1 @1

T

b. when 1 < n, < 1, my = m./2 and

de
dald .
P
3 ,/’
AP
¢t 2o —=
P gl
P -
-~ -~
= - On

F16. 5
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Srtm=1 (32)

The yield condition is given by (31) and (32).

6. Concluding remarks. As has been shown in Sec. 3, the adaptation theorem is
by no means the only way to obtain the correct yield condition in generalized stresses.
Even in the case of a purely statical procedure, reactions can also be eliminated by
other considerations.

It should be pointed out, however, that the maximizing procedure applied in Sec. 5
has already been used (see [7] as an example).

The method was open to criticism at that time because it was not certain that re-
actions, which were ignored, would in fact take values which permitted this maximizing.

Our theorem gives, a posteriors, a rigorous justification of this method.

Acknowledgment. The author is indebted to professor W. Prager for valuable
suggestions.

REFERENCES

1. W. Prager, The general theory of limit design, Proc. 8th Intern. Congr. Appl. Mech., Istanbul, 1952, 2,
65-72 (1956)
2. W. Prager, Problémes de plasticité théoriqgue, Dunod, Paris (1958)
3. P. G. Hodge, Jr., Plastic analysis of structures, McGraw-Hill, 1959
4. D. C. Drucker, A more fundamental approach to plastic stress-strain relations, Proc. 1st U. S. Natl.
Congr. Appl. Mech., Chicago, 1952
5. E. T. Onat and W. Prager, Limit analysis of shells of revolution, Proc. Roy. Netherlands Acad. Sci.
B 57, 534-548 (1954)
. H. Ziegler, Bemerkung zu einem Hauptachsen problem in der Plastizititstheorie, Z. fiir Angew. Math. u.
Physik (ZAMP), XI, 2, (1959)
. P. G. Hodge, Jr., The rigid-plastic analysis of symmetrically loaded cylindrical shells, J. Appl. Mech. 21,
336-342 (1954)

=)

I}



