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A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING*

BY
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Summary. A dual problem is formulated for the mathematical programming
problem of minimizing a convex function under convex constraints which reduces to
the classical dual problem in the case of linear programming problems. Duality theorems
are proved regarding the relationship between the problem and its dual.

1. Introduction. A duality theorem in mathematical programming is, generally
speaking, the statement of a relationship of a certain kind between two mathematical
programming problems. The relationship commonly has three aspects: (a) one problem—
the “primal”’—is a constrained minimization problem, and the other—the ‘“dual’’—is
a constrained maximization problem; (b) the existence of a solution to one of these
problems ensures the existence of a solution to the other, in which case their respective
extreme values are equal; and (c) if the constraints of one problem are consistent, while
those of the other are not, there is a sequence of points satisfying the constraints of the
first on which its objective function tends to infinity.

Dennis [1] and Dorn [2, 3] have formulated dual problems for the primal problem
of minimizing a convex function f of several real variables under linear constraints,
and shown (b) above in the case that f is quadratic, or just differentiable but strictly
convex. This note formulates a dual to the problem of minimizing a convex differentiable
function under non-linear, concave constraints; this dual problem reduces to theirs in
the case of linear constraints.

It has not been possible to establish (b) and (c¢) in full, and there is evidence that
they do not hold as stated. Theorem 2 below derives the existence of a solution to the
dual from that for the primal, and Theorem 3 establishes (c), in part, in the case of
linear constraints. Thus the problem studied here does not seem to enjoy the complete
symmetry of the notion of duality which is found in the linear case.

The known state of affairs regarding duality for this sort of problem is summarized
in the table of Sec. 4. Several questions remain open. The utility of all this is discussed
in Sec. 5.

2. The problems. Let f be a convex, differentiable function of z = (2, , -+, z.);
foreach 7 = 1, - -- , m, let g;(x) be a concave, differentiable function. For any function
¢, let V¢ denote the gradient of ¢,

(61 0¢)
oz, ’ ? ox,/ "

Primal problem Minimize f(x) subject to

g:(x) > 0, t=1,--,m. 1)
Dual problem Maximize f(x) — D™, u.g:(x) subject to 2)
Vi@ = Z u;V g:(2), u 2 0. 3
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A solution of one of these problems will be a point, x or (z, u) respectively, which
achieves the extreme value sought. The problems will not in general have solutions;
about the only relation we can state in their absence is that of Theorem 1 below.

Theorem 1. Let V be the infimum of f(x) under the constraints (1), and v be the
supremum of (2) under the constraints (3). Then

v < V.

Proof. Let z* satisfy g.(z*) > 0 (all ¢), and (x u) satisfy the constraints (3). We
then have the chain of relations
f@*) — f(x) = V@) (z* — 2)
2w Vg (e — x)

> Z u[g:(z*) — g:(2)]
> - Z u:9:(2);

the first is due to the convexity of f; the equality, to the constraints (3); the next in-
equality to the concavity of the g, ; and the last inequality to the non-negativity of
and g;(z*). It follows that

fx*) > f(x) — Zuigs(x):

which proves the theorem in the case that both sets of constraints are consistent. Allow-
ing the convention V = +4 o in case (1) are inconsistent, and » = — o in case (3)
are, the theorem follows.

3. The duality theorems. The “constraint qualification” of Kuhn and Tucker
{6, p. 483] will be assumed from now on. Stated for the primal problem at hand, it runs

Let z satisfy (1), and let dz be any vector differential such that Vg,(x) dz > 0 for
all 7 such that g,(z) = 0; then dz is tangent to some arc contained in the set of all
z satisfying (1).

The qualification serves to rule out certain singularities which might otherwise occur
on the boundary of the constraint set. The constraints g; will meet the qualification if,
for example, the constraint set has an interior point relative to the convex determined
by those constraints which are linear; and thus a set of entirely linear constraints meets it.

Under the constraint qualification and the properties that have been assumed for f
and g; , the Equivalence Theorem of Kuhn and Tucker [6, Theorem 3] reads

The point 2° is a solution of the primal problem if, and only if, 2° and some u° con-
stitute a saddle point for the Lagrangian function

L(z,w) = f(x) — Zuiyi(x), 4
that is,

Lz, u) < L%, v < Lz, u) 5)
for all v > 0 and all z.
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Our principal duality theorem is

Theorem 2. If 2° solves the primal problem, then there exists u° so that (z°, u°)
solves the dual problem, and the extrema are equal.*

Proof. The function L(x, u) is convex in z for any u > 0. It consequently satisfies
the following relation, which asserts that its graph as a function of x lies above any of
its tangent planes:

L(?/; u) - L(x7 u) > sz(x’ u)(y - x)'

Now V.L(x, u) = 0 for any (z, w) satisfying (3), so that if (z', 4) and (2%, u) both
satisfy (3) we have both L(z', u) — L(z°, u) > 0 and the reverse inequality, whence
L(z', u) = L(2, u); in other words, L(x, w) is independent of z for (x, u) satisfying (3).
Consequently.

L(z°, v*) = Max {L(z°,w) | u > 0}
> Max {L(z°, u) | (z°, u) satisfy (3)}
= Max {L(z,w) | (z, w) satisfy (3)}
> L(z°, u),

so that L(z°, 4°) is the maximal objective value for the dual problem. This proves the
first part of the theorem.
Finally

L, w°) = f(2°) — Z,u?g.-(x") = ("),

because each u;g;(z°) = 0; if this last statement did not hold we would have u; > 0
and ¢;(2°) > 0 for some %, and then L(z°, u°) could be increased by decreasing u? , in
contradiction to the saddle-point property (5). The proof is complete.

Theorem 3. If the primal problem has only linear constraints and these are in-
consistent, and the constraints of the dual problem are consistent, then the supremum
of the objective function (2) of the dual problem is + .

Proof. Let (x, u) satisfy the constraints (3) of the dual problem, and let
g:(x) = A’z — b, (all 7). Since these latter constraints are inconsistent, there exists
[4, Lemmas 4 and 5] * > 0 such that u*A* = 0 (all 7) and Z; u;b; > 0. It follows that
the point (z, v + tu*) satisfies the constraints (3) for all ¢, and that f(x) —
Z; (u; + tu*)g:(x) > + » ast — + o.

4. The state of affairs. The following four possibilities exist for both the primal
and the dual problem: (1) the problem has a solution; (2) the constraints of the problem
are consistent and the function to be extremized is bounded in the direction of extremi-
zation, but the problem has no solution—the bound is not attained; (3) the constraints
are consistent but the function is not bounded in the direction of extremization; (4)
the constraints are inconsistent.

The table below summarizes the known results in terms of the possibility of a given
pair of outcomes for the two problems. Theorems 1 and 2 account for the impossible
outcomes; examples exist for the outcomes known to be possible. Three cases are un-

*I am indebted to W. S. Dorn and R. E. Gomory for pointing out an error in an earlier version
of this theorem.
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settled; an example of a problem whose dual was bounded but had no solution would
help clear them up. With the exception of the second row and the second column, which
would constitute impossible categories for linear programs, and the annoying example
(6), the table is just the same as it would be if both problems were linear.

TABLE.
Outcomes of primal and dual problems.
PRIMAL
Has Bounded, Unbounded Inconsistent
DUAL solution no solution
Has YES ? NO YES
solution (5) (1) (6, 3)
Bounded, NO ? NO ?
no soln. 2 (1) 3)
Unbounded NO NO NO YES
1,2) (1 (1) (5)
Inconsistent, NO YES YES YES
2 (4) (5) (%)

(1) Established by Theorem 1.

(2) Established by Theorem 2.

(3) “NO” if the constraints are lincar, by Theorem 3.

(4) Illustrated by the example:m = 1, n = 1, f(z) = e, g(z) = 0.

(5) Illustrated by readily constructed linear programming problems [4, pp. 57, 58].
(6) Illustrated by the example: m = 1, n = 1, f(z) = 0, g(z) = —e=.

5. Critique. Suppose that the constraints of the primal problem are linear
gi(x)=Aix_b-' (i=1)"' 7m)’

where 4, is a row of the m by n matrix 4, and b, is the 7th component of the vector b.
‘The constraints may then be written

Az > b.
‘The dual problem assumes the form
Maximize f(z) — udx + ub subject to
Vi) =ud, u>0.
(Dorn [2] gives the objective function in the equivalent form
f(x) — Vf(z)x + ub.) ©)
In the case of quadratic programming with linear constraints,

f(x) = px + 32Qz,
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where Q is an n by n symmetric matrix. The objective function for the dual problem
becomes

pr + 32Qr — uAx + ub = —32Qx + ubd,
and its constraints
p + 2Q = uA.

Finally, of course, in the case of linear programming—quadratic programming with
Q = 0—we obtain the classical dual problem

Maximize ub subject to
p = ud, u > 0.

A basic difference between the non-linear duality results and those for linear pro-
gramming is that in the non-linear case the function f of the primal problem appears
not only in the constraints of the dual, as expected, but remains involved in its objective
function as well. This fact seems to diminish somewhat the usefulness of the dual prob-
lem for computational purposes: the primal should commonly be easier to solve. (How-
ever, the “cutting plane’’ method [5] for non-linear problems, formulated in dual terms
for computational purposes, turns out to be effectively an algorithm for the direct
solution of the dual non-linear problem.)

In certain cases the explicit appearance of z in the objective of the dual problem
can be transformed away. If the mapping y = V{(x) is inversible (which will be the
case if f is strictly convex), so that £ = h(y) may be written, then the dual problem
in the case of linear constraints assumes the form

Maximize f(h(y)) — yh(y) + ub subject to
’ y=udA, u>0.

Dennis [1] states the dual problem in this way, using the ‘“Legendre transform’
f(h(y)) — yh(y) of the function f. His formulation is more attractive when f if quadratic.
The inversibility of f entails the non-singularity of . Letting R be the transpose of
the inverse of @, under the substitution of y for z the dual of the quadratic problem
can be stated

Maximize — iyRy + pRy + ub — ipRp subject to
y = ud, u > 0.

It should be noticed that the ““nice’” properties regarding convexity that have been
postulated for the primal are not inherited by the dual in the general case, or even in
the case of linear constraints. The original form (2) for the objective of the dual problem
is a convex function of z (one does not like to maximize such a function), while its form
(6) is neither convex nor concave; the set of (z, w) satisfying the dual constraints is not
convex; and while the objective of the dual depends only upon  for points of this set,
it is neither a convex nor a concave function of u.

Things are much better, however, in the quadratic-linear case. The constraints are
linear and the objective is concave. The linearity of the constraints permits linear com-
putations in handling the dual, and makes possible an entirely linear algorithm for
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the solution of this problem. In the “simplex method for quadratic programming’ [7],
a point (z, w) satisfying the constraints of the dual is found for which z satisfies the
constraints of the primal and such that the difference, u(Az — b), between the objective
functions of the two problems vanishes. By Theorem 1, such a point solves the problem.

w N
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