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AN IMPLICIT, NUMERICAL METHOD FOR SOLVING TWO-DIMENSIONAL
TIME-DEPENDENT DIFFUSION PROBLEMS*
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1. Introduction. We develop an implicit scheme for the numerical solution of
two-dimensional, time-dependent diffusion problems and other related problems. The
underlying principle is the solution of a general set of linear, simultaneous equations
which may occur in nine-point differencing schemes.

We apply the method to both linear and non-linear problems. Each time step is
solved by an iterative procedure and a convergence condition is derived for the linear case.

The stability of any time-dependent treatment is investigated in terms of its par-
ticular differencing scheme independently of our method of solving the simultaneous
equations. Our scheme is quite useful when applied to simple, unconditionally stable
differencing schemes. Schemes involving more than nine points can be constructed and
the method is in principle generalizable to three dimensions.

2. Derivation of the method. The basic partial differential equation including the
linear and non-linear cases which we wish to consider is

V • {/(r, 0)V(O} + X(r, e)e - S(r) = K (1)

This is not the most general type of equation to which this method is applicable, but
it illustrates the generality of the method. We are specifically interested here in ap-
proximating the solution to this sort of equation by the use of finite differencing schemes.
Generally speaking, implicit schemes are written in the form of a set of linear or non-
linear simultaneous equations for the dependent variables over the mesh at an advanced
time. Various implicit methods of this type have proved to be of considerable practical
use. One such method is the Douglas-Peaceman alternating direction method [1]. It
represents the application of the one-dimensional Bruce, Peaceman, Rachford, and Rice
method [2] to two dimensions. In this method one direction is treated exactly at each
time step. An alternative method constructed by Baker and Oliphant [3] permits an
exact treatment over the entire two-dimensional mesh for a single time step. However,
this method has a practical limitation in the symmetry which must be imposed on the
second partial derivative term in order that the factorization which is involved can be
carried out. The method which we propose here does not have this limitation. How-
ever, as we shall see, this method is intimately related to the Baker-Oliphant method.

We wish to approximate the partial differential equation (1) by a finite differencing
scheme. We write our differencing scheme as a set of simultaneous equations

Biiei- = Dkl . (2)

Unless otherwise specified, we sum over repeated indices. The (k, I) and (i, j) indices
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refer to the position in two-dimensional space of the mesh points and the n index refers
to the advanced time. The Dk, contains such things as source terms and dn{Jl and 6'J2,
the values of 6U at earlier times. In non-linear problems, the coefficients B'k\ and Dkl
may also depend on the 61, . In order to avoid confusion in the rest of this section, we
will leave the advanced time index n understood. We will write out specific differencing
schemes in Sec. 5. The present method is a straightforward generalization of the Bruce,
Peaceman, Rachford, and Rice method to two dimensions. We do not factor the quantity
Sim' = At B\) as was done by Baker and Oliphant. However, we must still use a
nine-point differencing scheme rather than a five-point one in order to make the equations
all consistent with each other. Therefore, in Eq. (2), i and j differ from k and I, re-
spectively, by as much as, but no more than, unity.

The first step in the solution of (2) is to triangulate the quantity B'k\ , i.e., to write it as

Bi\ = wmx , (3)

where w™ has all zero elements except when

m = k, k — 1
(4)

n = 1,1 — 1

and bj,'n has all zero elements except when

i = m, m + 1 ^

j = n , n + 1.

Just as in the one-dimensional case, we set the diagonal element bkk\ (no sum) equal
to unity (although other normalizations could be used). Next, we write Dkl as

Dkl = W klQmn • (6)

Substituting (3) and (6) into (2), we get

wkibm'n0ij = wkigmn , (7)

so that we must have

9mn = KnOii . (8)

Equation (3) can now be written out in algebraic form as a set of equations with
no sums over indices

w= BiJ1''1; (9)

wiju = B\7U - wij^bizlU ; (10)

wi'r1 = byt1 - r; (id

wii = bh - - wijubiLu - utf-'&jj.,; (12)
P*+i/+i

bXli+1 = -^77- ; (13)
W{ j

biV = ^ J "~1; (14)Wij v '
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TbT1 ~ wW'-V, n,,
bii ~ wY,- ' (15)

b\jli+1 = l;+1; (16)
r>t + lj-l   t j—lii + lj — l /l^r\= w>i/ o.-,—i • (17)

Equations (9) to (12) serve to determine w'j1', and w\'j . Equations (13)
to (15) serve to determine b^1'*1, and by*1. Unfortunately, however, Eqs. (16)
and (17) involve only quantities which have already been determined by calculations
at previous mesh points, and in general they are not satisfied as identities. This in-
consistency can be removed if we go to an iterative scheme. To do this we write out
Eq. (2) and add and subtract quantities from the left side. The resulting equation (18)
is so far exactly equivalent to the original equation (2).

+ Bijue^u + (Biju+1 - ju+l + $r1,+1)0.-im + 1

+ B\ie{i + B<i+ieii+1 + (Bit11-1 - Pa1"1 (18)

+ fiV'-fyi+u-i + + BXli+10i+li+1 = Du .
Transposing appropriate terms to the right hand side, we get

BJr"-1®,.,,-. + + 0ir"+I**-u+i + Bireu-i + B\)eu + B\)+l6ii+l
+ 0it1,~1ei+li.1 + Bitu0{+li + Biili+1ei+ll+1 = eu , (19)

where

Eu = Du - m7U+1 - 0\Jli+1)di.li+1 + (Bit1'-1 - 0iVi~1)O<+u-1}. (20)

Now, Eqs. (9) to (15) are as before, but instead of (16) and (17) we have
0iili+1 = (2i)

pit1'-1 = wii-'bitir1. (22)

These equations determine 0iJli+1 and 0^"~1.
Then, we solve a single time step for a linear problem in the following way. The

values of 8 appearing on the right hand side of (19) are now taken to be guessed values
to be used in the iterations. After computing the 0's and guessing the 8's, E{j of (20)
is determined. In Eq. (6), replacing Du by Eu , we obtain

  Ejj ^t) Qii-1 ^ii Qi-\l 7 ^ii ' Qi-li-1
gU - WU ■ \4o)

With Eu known, we can compute <7,-f throughout the mesh. Then, with the b's and g's
known throughout the mesh, we can compute the 0's by Eq. (8) which is written out
as follows:

8a = g<i - b)i+1eii+1 - bHu0i+li - bitli+19i+li+1. (24)

The values of 8U determined in this way can be used to find new guessed values. We
will discuss the convergence of the iterative scheme for linear problems in Sec. 4.

It is important to notice here that the B\ \ are restricted only in forming a nine-
point scheme, but are otherwise completely general. Therefore, there is considerable
flexibility in writing appropriate differencing schemes.
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3. The boundary conditions. Very general boundary conditions can be set up.
We can set up our formulas to take care of such a region as illustrated in Fig. 1 in the
following way. First we define the quantities ri; and A,-,- .

p _ jl if ij is an internal point 1

[0 if ij is not an internal pointJ

Aif = 1 - r„. (26)
Our computational formulas are written

wij1'-1 = , (27)

w'ij1' = (Bi7" - «J7,,-,&;:i,f-1)r<-„ , (28)
wi;u = CBi)-1 - wJ71'-16'<ilJ_1)r„_1 , (29)

w\i = bh - wj71,-16jii,_i - »57"&"u - wi^biu, m
Dt' + lf + l

b<+li+1 = ! (31)
IV if

T>i +1/   oni,~1hi + 1'b<+u =  Ju r.+i. ; (32)

D«/+l -..t-i; i*'j + 1

6,,+1 = B^ r./+i ? (33)
W ij

pi7u+i = , (34)

/3*-1'"1 = ioTlbu"~l, (35)

= s,,- - {Bj71,_1^<-i/-x A.-1/-1 + Bi7ue<-U A

+ JS',-" + 10,•_!,■+! A,_l)+1 + 5,'} 10,,--i A,,-_i

+ #;+10<i+1 A„+1 + BiV'-'d^u^ Ai+u-i

+ B)tuei+li Ai+U + B\tli+1ei+u+1 A,+Il+1},

where /Ss-,- is a term arising from sources and the values of 6 accompanying non-zero A
are boundary values.

Eu = Du - {(B\JU+1 - fcll+1)6tu+ir,_lf+1 (3?)

+ (Bit1'-1 - Pitu-*)0t+u-xr4+„_i},

where 0* denotes a guessed value.

 Ejf Wjj Qij-iTij-i Wjj 'gj-nTj-u Wjj ' g<_1,-_1r,rooxda ~
W i j

Sii = gu - bii+16ii+1Tii+1 - bit^e^T^u - bitu+16i+li+iTi+li+1 . (39)

Some of the T's and A's are redundant here since the computed factors would be zero
anyway. It is understood that the formulas are to be applied only when ij is an ulterior
point of the region.

The calculational procedure for each iteration is as follows. We set our program
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Fig. 1. A typical mesh.

to run through the whole mesh as shown in Fig. 1 from the upper left hand corner to
the lower right hand corner, computing and storing the b's and g's for the entire mesh
using Eqs. (27) to (38). Then we run back through the mesh from lower right to upper
left computing the O's using Eq. (39).

4. The convergence condition for linear problems. Let us define the errors e and e*,

0Calo = + «, (40)

^guessed ^true ~f~ € . (41)

Values of 0guessea are specified for the entire mesh and put in as the 0*'s of (37). Then
the 0oalc are obtained from (39) in the course of the computation. Substituting (40)
and (41) into (19) we obtain

+ B<4,-Vh + )"+Vim
+ #rw i + BiUa + BH+ieii+1 + (42)
+ BitUei+u + B<tli+iei+li+l = [(5;rU+1 - $7W+1)ejL1/+a

+ (jb;;1,_1 -

We can write this equation symbolically as

C%u = D'UZ . (43)
In matrix and vector notation,

Ct = Dt*. (44)
The solution for t is written symbolically

e = C"1 Dt* (45)
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or

t = Kt*, (46)
where

K = C_1 D. (47)

Therefore we see that the convergence condition can be written in terms of the norm
|| A || of A. It is

II -K" II < 1. (48)
Thus if we can compute || A ||, we can tell whether or not a given problem converges.
Let us take as a definition of the norm, the following expression

Av,A' || = Max
ivvi (49)

where the v, form a complete set of linearly independent vectors in the space of the
problem. The process for obtaining Av, from v, is identical to the process for obtaining
e from s* by the use of (42). Equation (42) is similar to our original problem as given
by (2); however, now we already have the /3's on the left hand side of (42) so that it
automatically satisfies the consistency conditions (16) and (17). Therefore, no iterations
are required here.

We thus investigate the convergence of a particular problem in the following way.
First, we select the set of vectors v, . Then using (42), we compute the vectors Av, .
Then using Eq. (49) we compute the norm 11 A 11. If the convergence condition is sat-
isfied, we proceed to obtain the solution.

5. Numerical examples. As our linear example we will take the heat flow problem
discussed by Baker and Oliphant [3]. The differential equation is

d2e d2e _2 dd .
t~~5 + T~2 — a > wU)dx dydt

where a is a constant. The left hand side can be differenced either

■
(Az)

or

£ 0 _ + Oj + Ij + 0,1-1 + fl.-f + l ~

T n Qi-li—1 ~t" 01 + 1/-1 4Oij /m\

LJ = 2(^r (52)
For our actual scheme, we take a weighted superposition of the schemes illustrated
in (51) and (52). Thus,

a+L+6 + a,Lx9 = a 2 — , (53)

where

<*++<*x= I- (54)

We now make a direct comparison with the linear problem worked by Baker and
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Oliphant. For simplicity, we set (Ax) = (Ay). The time derivative is replaced by a
three-level formula [4]

dd 361 - 4017' + 61J2
dt = 2(AJ) (55)

Substituting (55) into (53), we obtain
(0n~2  

a+L+e + axLj + pe = a-2 ' 2{aq ' , (56)

where

* = -*m- <S7>
A simple algebraic manipulation shows that the Baker-Oliphant scheme for (Ax) = (Ay)
can be obtained by setting

"•-'"slg" (58>
(59)* P(Ax)2

We observe that (54) is satisfied by (58) and (59).
As in the particular example considered by Baker and Oliphant, we choose

a (At)/(Ax)2 = 1.02392228 so that the amplitude is diminished by a factor 10~1/16
at each time step. For this example, letting (Ax) = 1/12, we have

0 = -210.953511, (60)
a+ = 2.3652297, (61)

ax = -1.3652297. (62)
We carried this out on an IBM 704. The calculation gave the same result as the Baker-
Oliphant calculation. It was observed by them that the solution for a single time step
is exact and requires no iterations. Equivalently, we observe here that the y8*7l'+1 and
jS.-t1'-1 of Eqs. (34) and (35) are precisely equal to the + 1 and B]*1''1, respectively,
so that the coefficients of and in (37) are precisely zero.

Thus, we see how in this case our method reduces to the Baker-Oliphant method
as a special case. We can look at the relationship between the two methods in the fol-
lowing way. We obtain more generality by introducing the iterations on each time
step. When we specialize to the Baker-Oliphant method we have no need for the iterations
because the solution is obtained correctly in one step.

To illustrate how our method is applied to a scheme which does not permit the Baker-
Oliphant factorization, we considered an example with weights

a+ = 2/3, (63)

a, = 1/3. (64)
As a criterion for iteration we required that successive iterates be within one part in 103
of each other. We found that for this example four iterations were required per time
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step. In situations in which we can obtain a very good extrapolated guess for the suc-
ceeding time step, we expect not to have an excessively large number of iterations,
for example, some 5 or 6. This expectation has been borne out in a number of calculations
of the above type. However, even in differencing schemes to which the Baker-Oliphant
factorization does not apply precisely, it is advisable to choose weights closely cor-
responding to their method in order to reduce the number of iterations as much as
possible. In calculating linear examples, the program runs at about 13 milliseconds
per cycle point.

For our non-linear example we considered the same example as that used by Baker
and Oliphant, namely radiation flow in a material medium. The equation is

V2(04) = 16/£ (65)
Ol

With the present method, we need not make the change of variable required in the Baker-
Oliphant scheme, but we can simply linearize the second partial derivative term. We
use a linearization which is similar to that used by Bruce, Peaceman, Rachford, and
Rice [2] in their one-dimensional examples. The resulting difference scheme can be
written:

+ a+iB'iJ1' df-n + Bitudi+li + + BH+leii+,)

- [(aM(x) + aj?{,'(+) + P)]0ti = 16K {0ii 2(Jp' j
(66)

where

B7; = 1(6*-, 0*n) = (0*f + (e*m,n) + m)(d*S + («n)3, (67)
except for i — m, j = n,

Bii(x) = m, otu-i) + m, e.w) + f(e*, e?+1,-o + m, e*+u+1), (68)
5;;(+) = m, etu) + m, e*+u) + m, ez-j + m, e*i+1), (69)

and

^ = ~wy (70)
In the non-linear case we see that the 0*'s occur on the left-hand side as well as the
right-hand side. The procedure to be followed in accordance with the analysis of Sec. 4
would be to put a guess 6** into the coefficients given by Eqs. (67) to (69) and iterate
8* in Eq. (37) down as in a linear equation, and then to make another guess 6** and
so on. In practice we find it much better to "guess d* for both (67) to (69) and (37) at
the same time. The latter procedure was followed in the example discussed below.

For our sample calculation we picked /3 Ax2 = (3 Ay2 = —1.5 and used 11 X 11
interior mesh points. For initial conditions we chose

6(x, y) = 1 - sin sin (71)
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and we maintained the boundaries at unit temperature. This is the identical example
chosen by Baker and Oliphant. Initially some 6 or 8 iterations were required per time
step, but after 16 time steps, only about 2 iterations per time step were required for
three-place accuracy. We made the initial guess at each time step by a linear extrapola-
tion from the previous two times. The program runs at about 47 milliseconds per cycle-
point.

As with the Baker-Oliphant method, care should be exercised to prevent the guessing
of a negative temperature, as the occurrence of temperatures of different signs produces
an instability which causes the solution to diverge.

As was observed in the above calculations, the convergence of the iterations was
rather good. We can discuss why this should be so in the linear case on the basis of the
analysis of Sec. 4. We computed the norm of (49) for a number of sample matrices.
It was found that the convergence is best for the heaviest weighting of the diagonal
element of B'l) . On the left-hand side of Eq. (56), the first two terms weight the diagonal
and off-diagonal terms equally. In steady state problems, these are the only terms
present and for such problems we get fairly good convergence. For the time-dependent
problems, the third term adds on in such a way as to increase the weighting of the
diagonal elements and thus to enhance the convergence greatly. Also, in time-dependent
problems, taking extrapolated guesses helps considerably.
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