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Abstract. The equations governing the quasi-one-dimensional steady flow of a
conducting perfect gas in crossed, transverse electric and magnetic fields are treated
under the assumptions that the electric conductivity is a scalar, that the wall drag is
small and that the magnetic field due to the currents in the gas is negligible. The equa-
tions are normalized and different flow situations are illustrated by means of phase
diagrams (drawn for a gas of constant specific heats, 7 = 1.33). The possibility of a
smooth transition from supersonic to subsonic motion is pointed out and the phenomena
of standing shock fronts and choking are surveyed for constant-area, small-friction,
power-yielding flow. The appendix contains some general remarks on the system of non-
linear differential equations: x' — P(x, y)/R(x, y); y' = Q(x, y)/R{x, y).

Basic equations. .We postulate steady flow of an (almost) inviscid fluid in a structure
somewhat like the one outlined in Fig. 1. We assume that we have local thermodynamic
equilibrium everywhere, that the fluid is a perfect gas, which may or may not have
constant specific heats in the temperature range considered, that there exists a scalar
electric conductivity and that heat flow and radiation, gravitation and boundary effects,
except wall drag, may be neglected. We assume that wall friction is small and can be
taken into account by employing the conventional gas-dynamic drag coefficient for

Fig. 1. Outline of flow structure. The conducting gas flows in the channel between the two electrodes and
two insulating side walls (not shown). The gas velocity, u, and the electric field between the electrodes,
E, are perpendicular to each other and to the magnetic field, B. If u > E/B, an induced current, I,
will flow through the external load, Re; if u < E/B, R, should be replaced by a supply voltage, V, and
the current should flow in the opposite direction, producing an accelerating volume force, iB, on the

*Received December 1, 1960.
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one-dimensional flow. We also assume that the magnetic field due to the currents in
the gas is negligible and that, averaging over the cross section of the duct, we may
neglect second-order terms in the variations from the mean values.

With positive directions according to Fig. 1, we then obtain the following three
groups of equations

a) Gas relations

The equation of state p/p = RT
The specific heat cv = dh/dT = R/3, ,3 = 0(T)
For = const, the enthalpy is h — ftp/ p
and the entropy is s = 2? In (h$/p)

The Mach number M = \ u\ (j8p/(fi — 1 )p)~1/2
b) Electrical relations

The total current ^ = / (Az)i dx
Jo

Ohm's law, external circuit V = E Ay = IR„
Ohm's law for the fluid i = a(uB — E)
c) Mechanical relations
Conservation of mass fmS = const.

Conservation of momentum puS du/dx = —iBS — S dp/dx — F

Conservation of energy puS d(h + u2/2)/dx = —iES

where iES is the electric power yield per unit length. Across a discontinuity (shock
front) we must have

pu = const.

p + pu2 — const. (1)

h + u2 / 2 = const.
and, naturally, the entropy of the fluid may not decrease in passing the discontinuity.

Nomenclature

MKSA-units are used and the symbols have the following meanings

Azj
p pressure Ay r dimensions of apparatus

AzJ
p density I external current
R gas constant (average) V external voltage
T absolute temperature Re external resistance
h enthalpy per unit mass i current density
s entropy per unit mass <7 electric conductivity
/3 normalized specific heat B magnetic field

at constant pressure E electric field
u gas velocity S cross-section area
M Mach number F wall drag per unit length
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Principally the same equations have been treated by various authors using different
simplifying assumptions to render them analytically tractable. Thus Way [7] has an-
alysed, with numerical examples for power generators, three cases of frictionless constant-
conductivity flow in constant electric and magnetic fields. These assumptions, obviously,
do not yield a fully determined problem; thus Way introduces one of three restrictions:
constant velocity, constant area or constant pressure. Neuringer [3] has analysed the
constant-area, constant-conductivity flow in constant electric and magnetic fields.
Especially, he has derived equations giving the electric field corresponding to maximum
power for given length, magnetic field and inlet values. He presents numerical solutions
for a certain inlet Mach number, which qualitatively agree with what should be expected
according to our phase diagrams. However, the asymptotic solution, corresponding to
u E/B at the inlet, should not give a finite limiting length (5msit.). Berner and Camac
[1], when considering a space propulsion device, have studied frictionless, constant-
conductivity flow in a channel where the cross section and magnetic field are constant
(but where the electric field varies). As further restriction they choose either constant
temperature or a certain constant ratio between applied and induced electric field
(E/uB = (/3 + l)/2), which they somewhat arbitrarily designate as the maximum
acceleration case. This case has also been analysed by Resler and Sears [5]. Sutton [6]
has made a study of frictionless flow in a constant magnetic field and with E/uB — \
(corresponding to a local matching of external and internal load, i.e. iE = % ja). Gener-
ally, he assumes constant conductivity, and as further restriction he uses constant
velocity (also for varying a), constant temperature, constant pressure, constant density
or a cross section of constant area but varying shape. The slightly different problem
where the currents close in the gas has been analysed in connexion with two experi-
ments by Patrick and Brogan [4]. Finally the constant-area flow with friction in constant
electric and magnetic fields was studied by the present author in a preliminary report [2],
In all these reports the gas was taken to have constant specific heats.

Normalization of the problem. In the following we shall treat the problem in a
certain normalized form, which will enable us to give a qualitative outline of the possible
types of flow by means of phase diagrams. The normalized problem may also be prefer-
able for numerical integration.

We denote by a and b two characteristic quantities of dimension length and velocity
respectively

a = pu/B2tjj3a

b = E/B
and let subscript 0 indicate some chosen constant values1.

We introduce two dimensionless variables

u* - u/b0

p* = (3op/pubo

and two dimensionless parameters: the channel divergence parameter

■The quantity /So appearing in the equations is unessential and may well be put equal to unity.
To obtain conformity with the preliminary report [2], we shall, however, put /3o = /3 for a gas of constant
specific heats.
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a dS
* =

and the wall drag parameter

<p = (30a2f/D > 0,
where / and D are the conventional gas-dynamic expressions for the drag coefficient
and the hydraulic diameter, F = pu2S2f/D. (See e.g., A. H. Shapiro, Compressible fluid
flow, New York, 1953, Art. 6.2)

The differential equations for the normalized variables are found to be

du*
a

(■*• ~ D("* ~ k k a1)+~w
dx p* — (/S0 — Po/P)u *

(w* ~ r){p* + fu*-v0f) + (p* + jtu*)(vu* ~ ip*]
(2)

(4)

a =  a.  i e i m
dx p* - (ft, - pa/p)u* { )

The expressions for the main physical quantities are

RT = p*u*bl/p0

dh = bo d(p*u*), p = ${p*u*).
P o

For /3 = const., h = p*u*b20P/P0

iES = aE2S(u* — b/b0)b0/b = puS(u* — b/b0)bb0/apa

the electric energy extracted from unit mass per unit length being

iES _ _h^(§_ d(p*u*) 1 du*2\ __ _d_ /, tA
ftuS ~ °\p0 dx + 2 dx / dx V 2 /'

M2 = (j8„ - p0/p)u*/p*.

For /S = ft, we also have

s = R In [(p*u*)"/p*\ + R In S + const.,

rfs _ (u* — 6/b0)2 + yM*2
a dx p*u* '

pu = Pp./b0p*( 1 + u*/2p*)",

where p is the isentropic stagnation pressure.

We note that the critical line (see Appendix) of the system of differential equations,
Eqs. (2) and (3)

p* = (/So - Po/P)u*

corresponds to

M2 = 1 or u2 = fip/(JS — l)p
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and that the jump relations, Eqs. (1), give

PiUi = P2U2 ,

(p* - P*)/(w* ~ «*) = -00 ,

J (0/00) d(p*u*) = -i(uf - uf),

where subscripts 1 and 2 denote the state on the upstream and the downstream side
of the discontinuity respectively.

For /3 = const., the last relation may be replaced by

(;p* + p*)/2 - (00 - 0o/0)(w* + w*)/2 = 0,
i.e. the jump is centered on the critical line.

Because of the second law of thermodynamics, jumps may occur only from supersonic
to subsonic motion

P* - (0o - 0o/0i)"* < 0 < p% — (0„ - 0O/02)u% .
For (3 = ft, the change in entropy proves to be

°° a 2n + l

where 7 = 0/(0 — 1) is the ratio of specific heats, and

A = (p* - p*)/ip* + p*)y
is a measure of the shock strength.

We also note that

(1dp*/dx)/{du*/dx) —> —p0 when M —* 1.

A search for singular points, characterized by

dp*Idx = du*/dx = 0

for the physically interesting cases (E, B and a finite or zero) leads to the following
results. Let

Then

gives either

G = p* - (00 - 0o/0)u*.

G(dp* I dx) = G(du*/dx) = 0

a) (0 < (b/b0)2/a < <*>)

u* - 6/60

t v* = 2
a a 60

and possibly some points on the line G = 0, which we shall call pseudo-singular points,
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Or

b) ((b/b0)2/a = 0)

± * = <L±1U*.
a a

Phase diagrams. Numerical integration of Eqs. (2) and (3) would now yield the
path of the phase point in the p*u*-plane for any particular flow situation with given
initial values, etc. Without further simplification, little general knowledge is gained and
the advantage of the normalized treatment is rather dubious. Because of the explicit
^-dependence of the right-hand members of Eqs. (2) and (3), the phase point trajectory
through any given point is not unique. However, in some cases it may be justifiable to
neglect this ^-dependence and we can then construct a phase diagram with unique
trajectories.

If, for instance, the ratio between width and height of the channel does not vary, i.e.
Ay/Az = const., we can assume

ESi/2 = const.

BS1/2 = const.

and consequently

E/B = const.

B2/pu = const.

Thus

a = a0<r0/a

b = 60

(except in case of degeneracy, where we may have b = 0 or b = °°. If b — b0 < 0, the
physically relevant part of the phase diagram is the third quadrant, p* < 0, u* < 0.
We shall, however, not discuss this case.)

If, further, the area variation is moderate it may be permissible to use mean values
for <p/a and 4>/a, especially as ip and i will mostly have the character of perturbation
parameters. Finally, when computing <p and f, we must either assume that the electric
conductivity is constant or approximate it by some function of p* and u* only.

Let us assume that we may take the conductivity to be constant in this connection
and also that the fluid may be treated as having constant specific heats (/3 = /30 = const.).

First, we consider the degenerate case, where the conductivity or the applied electric
field is zero, which means that the power yield is identically zero. Equations (2) and (3)
are then reduced to

du* = u*(u*(<p + 1 )/a - p*t/a) , .
dx p* - 03 - l)w* ^ '

dp* = (p* + u*)(u*{<p + 1 )/a - P*i/a) (v)
dx p* — (0 — l)w*

Here, b0 is an arbitrary constant and the relevant parameters, (<p + 1 )/a and ip/a, are
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finite. The equations can be integrated directly, using Eq. (4), which is reduced to

p*u* + u*2/2 = const. (4')

(The integration constant may be put equal to unity because of the arbitrariness of b0).
Equation (4') gives the shape of the trajectories, which are all similar. Evidently, if
\p/a = (<p + I)/a = 0, every point is an equilibrium point, i.e. all flow variables are
independent of x. Other possibilities are illustrated in Fig. 2, where the direction of
motion along the trajectories is indicated by arrows. All diagrams in this and the follow-
ing figures have been constructed for 0 = /30 = 4, corresponding to y = 1.33.

A second degenerate case is characterized by finite conductivity and electric field
but zero magnetic field. Equations (2) and (3) are now

du* = C + u*(u*<fi/a - p*j/a) ,
dx p* — ((3 — l)w* '

dp* = <3C + (p* + u*)(u*<p/a — p*j/a)
dx p* — (P — l)w* '

(where C = cE2/publ may be put equal to unity because of the arbitrariness of b0).
The possible types of phase diagram are given in Fig. 3.

Thirdly, we have collected in Fig. 4 the types of phase diagram that obtain when
either or both of <p and ^ are so small as to be negligible. When both <p and ip are zero
(Fig. 4.a), an exact integral of Eqs. (2) and (3) can be found

p*u* + u*2/2 — p*/P — u* = K = const. (5)

or, solving for p*,

p* =
K + u* - u*'/2

u* - 1/p

Substituting this in Eq. (2) with <p = \p = 0 and integrating, we find

f <r dx
J CqCIq

_ f p3 - * i 0 ~ * + ( 1 i  , l-i/P Y
J [u* - 1 (j3 - l)2 \u* - 1/0 u* - 1 (u* - 1/(8)7. du*.

It is evident from Eqs. (2) and (3) that, for small values of <p and the phase diagram
will be substantially unaffected except near u* = b/b0 = 1 (and, for \p ^ 0, for large
p*-values combined with relatively small values of u*). Thus, except in special cases,
it may often prove convenient to use Eqs. (5) and (6) for a first approximation2. On
the other hand, it is obvious that the degeneracy, manifested by the line of singular
points in Fig. 4.a, is removed by the introduction of a finite value of <p or no matter
how small.

Finally, when both <p and ^ are finite, the phase diagrams will be similar to those in
Fig. 5. In this figure we have also included a sketch indicating what regions in

2In the earlier report [2] six diagrams are presented, which, for /3 = 4 and different values of K,
give (B'/pu) fa- dx, pRT/b2 and M as functions of (h + u2/2)/62. The diagrams also give (pu)ib/(3p,i
as a function of (hi + Ui2/2)/b2, where subscript i refers to the state at the duct inlet and ps is the
isentropic stagnation pressure.
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Legend: ————- Phase point trajectory
 Critical line
oooooooo stable singular points

xxxxxx xx Unstable singular points

Fig. 2. Phase diagrams for degenerate cases, I; a E = 0. A phase diagram shows the variation along the
channel of the normalized velocity, u*<* u, and the normalized pressure, p* cc -pS, (where S is the
cross-section area) for given values of the friction and channel divergence parameters, <p and \p. In this
figure we can recognize the normal gas-dynamic types of adiabatic flow. Thus, o represents frictionless
convergent flow and c constant area flow friction; in both cases the gas velocity tends to approach
the speed of sound, represented by the critical line. Further, / represents divergent frictionless flow,
accelerated when supersonic and decelerated when subsonic. In b the effects of friction and area change
(convergent) cooperate, whereas in d and e they oppose each other. The singular line in d and e cor-
responds to a balance between friction and area-change effects such that u* and p* are independent of x.
With short-circuited electrodes (E — 0), the effect of the magnetic field, represented by 1 /a in the

parameter (<p + 1 )/a, is analogous to that of friction.
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Fig. 3. Phase diagrams for degenerate cases, II; B = 0. These diagrams illustrate the effect of Joule
heating, a E2, in the absence of magnetic forces. In a this is the only effect and we see that the velocity
approaches the speed of sound. The effects of other factors—b friction, c convergent channel and d friction
and convergent channel—which separately show the same tendency, will only modify the trajectories
slightly. In e the effects of Joule heating and channel divergence oppose each other and we see that the
former dominates at low pressures and velocities and the latter at high pressures and, less markedly,
at high velocities. Friction, when small, will mainly influence the behaviour at low pressures and high
velocities, /; its influence will gradually spread to higher pressures as the ratio between the friction and

channel divergence parameters increases, g, h and i.
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Fig. 4. Phase diagrams; <p \p = O. (N.B. Contracted p*-scale in d.) These diagrams represent the cases
where friction and/or channel divergence are negligible. If these effects are small, the purely electro-
magnetic effects illustrated in a will dominate except near u = E/B (u* = 1). This may be seen from
6 (friction), d (divergent channel) and / (convergent channel). Near u = E/B and when some other
effect is great (c, e, g and h), the phase diagram will differ radically from a. One should note the smooth
transition from supersonic to subsonic motion, which may occur with small friction, b, or small con-

vergence (not shown).



2Po
Parametric regions

Fig. 5. Phase diagrams; <p \j/ 4=0. (N.B. Contracted p*-scale.) These diagrams represent the cases where
both friction and area change as well as electromagnetic effects must be taken into account. The values
of ip and for the different diagrams in this and the preceding figure are indicated by the letters in the
map of parametric regions. In i,k(r and s) we note the existence of a stable equilibrium point for u = E/B
(u* and p* independent of x), in I, v (and t) it is unstable; this point corresponds to the singular line in
Fig. 2, d and e. We also note the smooth transition from supersonic to subsonic motion that is charac-

teristic for the regions I, t and a small part of region m (not illustrated).
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the <p\p-plane correspond to the various types of phase diagram illustrated; the letters
refer to the phase diagrams in this and the preceding figure. (The regions r, s, t, w and x
have not been illustrated; they differ from their respective lower neighbours i, k, I, n
and q mainly in that the slope of the trajectories is negative along the whole w*-axis.)
We note that the singular point (w* = 1, p* = <p/\f/) is a stable nodal point in the super-
sonic range with no limit cycles for parameter values in regions i, k, r and s. When the
parameters fall in the I, t or v regions, it is a saddle point in the subsonic range and,
for \p < 0, it falls outside the physically relevant part of the phase plane. Regarding
the pseudo-singular points on the sonic line, we find that no such points exist for the
parametric regions n, q, v, w and x; when they exist they are two in number, and the
one nearest the origin is always in the first quadrant (0 < u* < 2/(/3 + 1)) and is always
a "saddle point". The one farthest from the origin may be a "saddle point" (in regions
k and s, u* > 1, and in regions i and r, u* < 0), a "nodal point, stable from below,"
(in regions I and t and a small part of m near the ^-axis), a "focal point" (in the main
part of region m) or a "nodal point, stable from above," (in a very small portion of region
m near the bottom left hand corner); for all the latter cases we find 2/(/3 + 1) < u* < 1.

The pseudo-singular "nodal point" has a special significance in that the phase point
moves across the critical line with a finite velocity, provided the initial point lies within
a certain range. This implies the possibility of a continuous transition from supersonic
to subsonic motion (or vice versa, depending on the type of "nodal point") without a
throat in the duct and even when heat exchange effects are negligible. The parametric
region where the pseudo-singular point is "nodal and stable from above" is, however,
so narrow as virtually to exclude the possibility of a transition from subsonic to super-
sonic motion. (For 13 = f}0 = 4, the width of this region is, approximately,

-OS — l)/4/3 < * < -03 - 1)/4/3 + 7 10"6
for <p = 0 and decreases for increasing <p.) Further, the uniqueness of a trajectory dis-
appears when it crosses the critical line at a pseudo-nodal point; thus the phase diagram
does not tell what will happen downstream from a smooth transition, but it gives some
indication as to what can happen. Physically, this may be determined by end conditions,
but there might also exist a corresponding real indeterminacy.

In the general case, the phase point cannot cross the critical line except by dis-
continuous jumps from the supersonic to the subsonic range. This means that there may
arise phenomena, somewhat analogous to the choking and the standing shock fronts
known from compressible fluid flow in constant-area ducts with friction. (See e.g.
Shapiro, loc. cit.) The analogy is far from perfect, however, as the electromagnetic
"friction" force is negative for velocities smaller than E/B and also gives rise to energy
exchange with the surroundings. A qualitative discussion of some typical cases of power-
yielding, constant-area, small-friction flow, corresponding to the right-hand part of
the phase diagram of Fig. 4.b, was given in the earlier report [2]. Keeping the boundary
conditions fixed, we discussed how the phase-diagram image of the flow varies when
the length of the electrode section (or, rather, the product of length and conductivity)
is increased.

For a duct fed through a convergent nozzle and discharged into a constant-pressure
receiver, we showed that the flow will gradually be choked and the exit velocity de-
crease until the velocity at the duct inlet corresponds to u* = 1. When the length is
increased further, the flow rate will remain almost constant and the exit velocity will
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increase, as more and more energy is taken up by the gas from the external electric
circuit. The existence of choking effects has been questioned by Neuringer [3] on the
basis of his numerical results. Their absence there is, however, due to his assumption
of constant inlet Mach number.

If the gas enters via a convergent-divergent nozzle and is let out into a low-pressure
receiver, the (supersonic) exit velocity will first decrease while the inlet velocity remains
constant. Provided that the trajectory lies above the range of smooth transition of the
pseudo-nodal point, a shock front will develop at the outlet when the velocity there
becomes sonic and, as the length is increased further, this shock front will move up-
stream. As long as u* > 1 everywhere in the duct, the outlet velocity, while remaining
sonic, will at first increase slightly because of friction effects, but, if the shock enters
the nozzle, the (still sonic) outlet velocity will again decrease. The shock may reach the
nozzle throat and vanish there; then the flow will be choked in analogy with the con-
vergent nozzle case. Depending on the area ratio of the nozzle and the initial state of
the gas, it may also happen, however, that the shock stops in the divergent part of the
nozzle or in the electrode section. This implies that the velocity in the duct inlet or on
the downstream side of the shock corresponds to u* ~ 1 and, after this state has been
reached, further increases in the length will not affect the flow upstream from this posi-
tion, whereas the (sonic) outlet velocity will increase, as more and more energy is taken
up by the gas from the external electric circuit.

If, however, the initial trajectory lies below the separatrix of the pseudo-nodal
point-—which, for small values of <p, is approximated by the no-friction trajectory
through (u* = 1, p* = j3 — 1) with K = (/3 — 2)(j3 — i)/(3, Eq. (5)-—no shock front
should develop when the exit velocity becomes sonic3. Instead, the phase point should
pass through the pseudo-nodal point with a finite velocity (a dp*/dx ~ <p/(/J — 1)).
Beyond the pseudo-nodal point it will continue along that trajectory which makes the
outlet velocity sonic. Thus, when the length is increased further, the phase point will
follow successively higher-lying trajectories and the (sonic) outlet velocity increase,
as more and more energy is taken up by the gas from the external electric circuit. That a
smooth transition is the only physically plausible phenomenon in this case is evident,
as a jump from a point on the (supersonic) trajectory should end to the left of the vertical
line through the pseudo-nodal point, where the trajectories go to infinity, and it would
be impossible to satisfy the end condition of sonic outlet velocity.

If the gas cannot be treated as having constant specific heats and/or constant con-
ductivity, it is still feasible to construct a phase diagram for any given situation—•
provided that it is permissible to regard 0 and a as functions of p* and u* only. In most
cases it should be sufficient to take into account the temperature dependence (T « p*u*),
but should it prove essential to include also a pressure dependence, it is necessary to
disregard the area variation in this context by using p oc p*/S ~ p*/S0 ■ We have not
included any such phase diagrams, as they would appear as distorted images of those
presented, lacking in generality and, qualitatively, without any significant new features.

Acknowledgments. I wish to thank Prof. H. Alfven for his kind interest in the
work, Dr. S. Lundquist and Prof. G. Borg for many helpful discussions and Mrs. K.
Forsberg for drawing the figures.

3As the significance of the pseudo-singular points was not analysed in the preliminary report [2],
this case was not included in the original survey and an erroneous statement was made (p. 14) to the
effect that all trajectories in the region u* > 1 end on the critical line.
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Appendix

Remarks on a class of systems of non-linear differential equations. The system of
non-linear differential equations studied in this report can be generalized as

x' = P(x, y)/R(x, y)

y' = Q(x, y)/R(x, y)
(SO

(See e.g., Minorsky, Non-linear mechanics, Ann Arbor, 1947. Part IV. Chap. XX &
XXII.) In addition to this system, we have the requirement—physically founded—that
two functions, say F{x, y) and G(x, y), be continuous everywhere, whereas discontinuities
in x and y may occur under certain, yet unspecified, circumstances.

The phase trajectories of S, are the same as those of

(S2)
x' = P(x, ?/)]

y' = Q(x, y)\
but the direction and magnitude of the phase point velocity may be different for the
two systems. The topological methods for sketching the trajectories of S2 are well-known
and straightforward. (See e.g., Minorsky, loc. cit. Part I.) Let us assume that we have
made an outline of the phase diagram of S2 and that it includes the isoclines P = 0 and
Q — 0, and, further, that we have found and sketched the isolated points and curves
where R = 0. By studying the sign variation of P, Q and R, we can now find the direction
of motion of the phase point along the trajectories in the regions bounded by the curves
P = 0, Q — 0 and R = 0.

Before examining the behaviour of the solutions at non-normal points, we shall
make a number of assumptions, which shall hold in the whole of (the relevant part of)
the xy-plane.
A.l F, G, P, Q and R are continuous.
A.2 The number of points where P = Q = 0 is finite. P and Q have continuous first

derivatives at such points and PxQy — PVQX does not vanish there.
A.3 R = 0 corresponds to a finite number of isolated points and a finite number of

curves with a finite number of intersections. R possesses continuous first derivatives
near points where R — 0 and continuous second derivatives, which do not all
vanish, near points where R = Rx = Ry = 0.

A.4 P, Q, R, Rx and Ry do not vanish simultaneously.
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A.5 At points where R = 0, the functions F' = (FXP -f- FVQ)/R and G' = (GXP + GyQ)/R
exist and are continuous. This implies sufficient differentiability of the functions
involved.

A.6 R, P, Fy and Gy do not vanish simultaneously.
A.7 R, Q, Fx and Gx do not vanish simultaneously.

We can now distinguish between four types of non-normal points of Si .
I. A singular point is a point where P = Q = 0 but R ^ 0. Its properties are similar

to those of the corresponding point of S2 , but its stability will depend on the sign of R.
II. A critical point is a point where R = 0 but neither both Rx and Ry nor both

P and Q vanish. A line of such points is called a critical line. The phase point velocity
along a trajectory through a critical point changes sign (and is infinite) at that point;
thus, the phase point cannot proceed continuously through (or stop at) a critical point.
The assumption commonly employed is that the phase point jumps discontinuously
from the critical point to some other point determined by the continuity of F and G.
In our case, the jump occurs before the phase point reaches the critical line; this type
of jump is physically plausible when distance and not time is the independent variable
and the end conditions can influence the state immediately behind the jump (e.g., sub-
sonic motion after the discontinuity). An interesting property of critical (and pseudo-
critical, see below) points is evident from the assumption (A.5). Denoting a unit vector
parallel to the trajectory through the point by s, we find

s-grad F - s-grad G = 0

which means that either F(G) has a stationary value or grad F (grad G) is perpendicular
to the trajectory. Should either of the gradients, say grad G, vanish at more than a
finite number of points where R — 0, we may replace G by a suitable combination, such
as H = F + G. Thus, normally the curves F = const, and G = const. (II = const.)
are tangent to each other and to the trajectories at their intersection with curves corre-
sponding to R = 0. If F or G is linear, say F — y — kx, R = 0 is obviously an isocline
(dy/dx = k). We also see that jumps originating at critical points are impossible if no
pair of curves, F = const.; G = const., possesses more than two points of intersection.

III. A pseudo-singular {pseudo-nodal, etc.) point is a point where P — Q = R = 0
but Rx and Rv do not both vanish. Given the assumptions above, we can prove that
any intersection between R = 0 and P = 0 or between R = 0 and Q = 0 is a pseudo- singu-
lar point. If we assume e.g., R = P = 0, the assumption (A.5) gives F„Q = GyQ = 0; and
Q must vanish, as, according to (A.6), Fv and Gy do not both vanish. The phase point
velocity at the point will depend on the slope of the trajectory; using (A.2) we find that
it will differ from zero, and using (A.4) that it will be finite, except if the trajectory
should happen to be parallel to the critical line. In Fig. 6 we have illustrated the differ-
ent types of pseudo-singular points, corresponding to the three types of singular points.

a) Pseudo-focal (pseudo-vortex) point. The point is surrounded by arc-shaped
trajectories beginning and ending on the critical line.

b) Pseudo-nodal point. This point—like an ordinary nodal point—can be character-
ized by two slopes: the "slope of approach" and the slope of the separatrix. We may
expect a smooth transition if the phase point initially lies within the cross-hatched
region. In a boundary-value problem like ours, the end condition may determine which
trajectory the phase point will follow after passing the pseudo-nodal point; in an initial-
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a) Pseudo-focal b) Pseudo-nodal c) Pseudo-saddle
point point point

Legend:  • Phase point trajectory
 Critical line
  Line of characteristic slope

Fig. 6. Pseudo-singular points.

value problem this may be undetermined or determined by factors neglected in the
analysis.

c) Pseudo-saddle point. This point is again characterized by two slopes, correspond-
ing to the two separatrices separating the regions where the trajectories end on the
critical line, turn back, and begin on the critical line respectively.

It is not to be expected that the separatrices, being discrete trajectories, correspond
to physically observable smooth transitions. The application of restrictions having
the nature of desiderata, such as constant gas velocity throughout the duct in our case,
may easily hide the nature of the pseudo-singular point and lead to the presumably
erroneous conclusion that a smooth transition will occur at a pseudo-saddle point (see
e.g. Sutton [6]). If it should happen that the slope of the critical line equals one of the
characteristic slopes, and especially the "slope of approach" of a pseudo-nodal point,
further considerations may be necessary. One should, however, first of all ascertain
that it does not depend on a never fully realizable desideratum, such as perfect sym-
metry of a circuit.

IY. A pseudo-critical point is a point where R = Rx = Rv = 0 but neither all of
Rxx , Rxy and Ryv nor both P and Q vanish. It was proved above that R = PQ = 0 im-
plies R — P = Q = 0; thus, neither P nor Q vanishes at a pseudo-critical point. Isolated
points where R — 0 are pseudo-critical, as are points of intersection of critical lines;
there may also exist lines of pseudo-critical points. Except in cases where the trajectory
is parallel to a critical or pseudo-critical line, the phase point velocity along a trajectory
through a pseudo-critical point, though becoming infinite at the point, does not change
sign. The motion of the phase point is integrable and the pseudo-critical point will not
affect the continuity of the solution. In contrast with the discrete trajectories leading
through a pseudo-saddle point, the discrete continuous trajectory leading through the
pseudo-critical point at the intersection of two critical lines may well have a physically
observable counterpart. The motion of the phase point along a trajectory near that
through the pseudo-critical point should, in general, be quasi-continuous, i.e. when it
reaches the first critical line the phase point will jump to a point on the same (^-tra-
jectory beyond the second critical line (Fig. 7a). To prove this we assume that F'0 ^ 0
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Fig. 7. Intersection of two critical lines.

and that the trajectories are not parallel to either critical line. Denoting values at the
pseudo-critical point by subscript 0, distance from that point by p and differentiation
along the trajectory by d/ds, we find, using (A.5)

dG/ds = (G'o/F'o) dF/ds + 8,
where 8 is of the third order in p, whereas in general the difference between grad G and
a constant times grad F is at least of the first order in p (second order in p if Fx0 = Fv0 =
Gx0 = Gv0 = 0). A typical plot of the variation in F and G along a trajectory traversing
the two critical lines near the pseudo-critical point is given in Fig. 7b. (Geometrically,
dF/ds approximates a hyperbolic paraboloid—such as dF/ds cc xy—with its saddle
point at the pseudo-critical point and its horizontal generatrices along the critical lines.)
Thus, to a high order of approximation, jumps will occur between points on the same
trajectory. In the first approximation, the length of the jump is 1.5 times the distance
between the critical lines measured along the trajectory. Obviously, we cannot say that
this jump must be unique, but in a physical application it presumably would be.

When studying non-linear systems, it is essential to keep the physical background
in mind. When a system is assumed to be stationary in time, the assumption may have
to be tested experimentally. The justification of the discontinuity treatment of critical
points is empirical and the same must be true regarding pseudo-singular and pseudo-
critical points. As an example where pseudo-singular points occur in an initial-value
problem we may choose the Abraham-Bloch multivibrator. (See e.g., Minorsky, loc.
cit. Sec. 137.) Using the two grid voltages as phase variables, we can describe the situation
thus. For vibrations to be possible, the characteristic parameter/max = rRSmxt/(R + r)
must exceed unity. When /mas is slightly greater than one we expect a pseudo-nodal
point in the first quadrant with a smooth transition towards the origin and when /mos
is somewhat greater we expect a pseudo-nodal point with its slope of approach approxi-
mately parallel to the critical line. Finally, when /max is still greater, this point corresponds
to a pseudo-saddle point with a pseudo-focal point on each side.


