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A FUNDAMENTAL PROBLEM OF NAVIGATION IN FREE SPACE*
BY

GEORGE M. EWING
University of Oklahoma Research Institute and U. S. Army Artillery and Missile School

1. Introduction. We are concerned with the problem, termed fundamental by
D. F. Lawden [6, p. 171], of transferring a rocket-driven vehicle from an initial position
and velocity to a terminal position and velocity in such a way as to minimize the mass
ratio.

Mathematical models for this and other questions considered in recent publications
(see Ref. [4] through [9] for examples) suggest problems of Bolza in the calculus varia-
tions but often are not covered by the formulation of Bliss [1, p. 189] as a result of the
essential nonincreasing character of mass.

Treatments fall into: Type 1, in which mass M is permitted to have discontinuities
(as in [4, 5, 6]) and Type 2, in which a bound is placed on the rate of mass flow (as in
[7, 8, 9]). Type 2 simulates an obvious limitation of rocket motors. Type 1 problems
though less realistic in this respect are of interest per se, sometimes appear easier to
attack, and furnish bounds on the performance provided by solutions of corresponding
Type 2 problems. Type 2 problems have been treated (see [9, p. 9, items (2), (3)]) with
the aid of side equalities equivalent to the restriction that mass M be monotone, a
device introduced by F. A. Valentine ([10, p. 4]) under more classical hypotheses. An
alternative technique ([8, p. 582]) termed parametric representation is due to Miele.
Such approaches bring Type 2 problems closer to the classical fold. In contrast it appears
that definitive treatments of Type 1 problems require new lines of attack.

The theory of optimal burning and steering programs is presently in an incomplete
state. Many writers consider only the formal manipulation of first order conditions.
There is no explicit statement of problems; hence the reader must decide from the
context which functions are admissible and which steps are legitimate. Questions of
existence and sufficiency are largely unmentioned. Miele ([7, pp. 105-109] and [8])
gives sufficiency arguments for certain problems.

In the formulation of Type 1 problems it seems desirable to admit general non-
increasing mass functions M. Neither M nor the velocity is then necessarily AC (abso-
lutely continuous) in the time t. Conclusions based upon differential equations or other-
wise involving the integration of M' or of accelerations can be correct only by coincidence.

The present paper establishes the existence of the absolute minimum for a Type 1
planar version of the problem mentioned at the beginning and shows that at least one
optimal program is determined by certain solutions of an elementary system of equations,
(3.2). The problem is partially covered by [4] and by the heuristic discussion of [6,
pp. 171-175], subject to the objection of the preceding paragraph.

2. Formulation of the problem. Let T denote the time required for a particle to
go from point (0, 0) and velocity (u, v) to position (a, b) and velocity (U, V). Time T
is preassigned except for Sec. 8. We understand T to be positive with the single exception
that the trivial case T = 0 is included under Theorem 5.4 as type (v).

* Received July 21, 1959; revised manuscript received November 12, 1959.



356 GEORGE M. EWING [Vol. XVIII, No. 4

An admissible burning program is any real function M of time t defined and non-
increasing for all real t and having respective constant values M(0—), M(T+) for
t < 0, > T.

An admissible steering program is any real function 0 of t defined and continuous
for all real t. Continuity appears to be acceptable in the construction of a model and
suffices for the needs of Sec. 6. This restriction could likely be relaxed with sufficient
effort.

Let n denote the measure generated by the non-decreasing function — In M of
an admissible M.

An admissible trajectory is any ordered pair of real functions x, y of t defined by an
admissible M and 6 and the system of integral equations

u(t) = c / cos 6 d/j. + u,
Jo

v(t) = c I sin 6 d/j. + v,
Jo

x(t) = / u(t) dr, y{t) = / v(t) dr.
Jo Jo

(2.1)

If M should have a continuous derivative M' then dn could be replaced by —M' dr/M
in (2.1). Familiar trajectory equations ([6, p. 172]) would follow by differentiation.

Constant c is to be interpreted as magnitude of the exit velocity. Functions u(t),
v(t) introduced is (2.1) are discontinuous when and only when M is discontinuous. Clearly
u(0—) = u, y(0—) = v. Moreover | u(t) |, | v(t) \ are bounded by c In (M(0—)/M(T+));
hence x(l), y{t) are Lipschitzian and therefore AC on any time-interval. We then know
that x and y are differentiable a.e. (almost everywhere) and that x'(t) = u(t), y'{t) =
v(t) a.e. on [0, T] or any other interval.

If M, 6 and the pair x, y are all admissible the ordered quadruple (M, 6, x, y) will
be termed admissible.

Problem. To minimize M(0—)/M(T-{-) on the class of all admissible quadruples
satisfying the fixed terminal conditions

u(T) = U, v(T) = V, x(T) = a, y(T) = b. (2.2)

Both the existence and the nature of a minimizing quadruple will be established
via an auxiliary problem.

3. Formulation of the auxiliary problem. Let n > 2 be a fixed positive integer
and consider the new problem obtained from that of Sec. 2 by restricting M to be a
step-function with at most (n + 1) steps at l0 = 0, /„ = T, and at times U ,t2, • • • , t„-i ,
which may be anywhere on the closed interval [0, T) and are not necessarily in the order
indicated by subscripts. Let r{ denote the mass-ratio at , viz.

r,- = M(t{ —)/M(ti +), i = 0, • • • , n.

Integrals (2.1) are now expressible as sums on i from 0 to n and the auxiliary problem
can be rephrased as the following ordinary minimum problem.

Auxiliary Problem. To minimize

E In = In (M(0-)/M(T+)) (3.1)
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subject to the constraint

(3.2)

(T — <,)(cos 0,) In Ti = (a — uT)/c,

^j(T — <,)(sin 0.) In r, = (b — vT)/c,

(cos 0.) In r,- = {U — w)/c,

XI (sin 0() In r, = (F - t>)/c,
and to the further restrictions

r, > 1, i = 0, 1, •• • , n, (3.3)

<o = 0, tn = T and 0 <U<T, i = 1, • • • , (n - 1). (3.4)

Clearly the infimum of M(0—)/M(T+) does not excede the particular value K
obtained by setting r,- = 1 and assigning arbitrary values to 0{ , i = 1, • • • , (n — 1),
and completing the elementary solution of the four equations (3.2) for r0 , r„ , 60 , dn .
Neither the existence nor nature of solutions of the auxiliary problem is affected by
adjoining the restriction

r, < K, i = 0, ••• ,n. (3.5)

Since 6i enters only through the periodic functions sine and cosine we are similarly
free to add the restriction

0 < < 2ir, i = 0, , n. (3.6)

Side conditions (3.2) through (3.6) define a bounded closed non-empty subset G
of (3n + 1) — space; hence there exists a minimizing point

(r0 ,n , ■ ■ ■ ,rn , 6o , 0i , • • • , 0» , , • • • , tn-,), (3.7)

in G for the continuous function 2 In r,- .
Successive reductions of the minimizing set of values (3.7) are effected as follows.
If t, = 0 drop the jth term in each equation (3.1), (3.2) at the same time replacing

In r0 in (3.1) by In rari and adding jth terms to 0th terms vectorially in (3.2). Side con-
ditions (3.2), (3.3), (3.4) continue to hold but the number of summands in (3.1), (3.2)
is reduced by unity. Similar remarks apply if <,■ — T or more generally if t,- = tk .

If r,- = 1, j ^ 0 or n the jth terms in (3.1), (3.2) are understood to be deleted. It
is convenient to retain first and last terms in these sums as objects of discussion even
when such terms equal zero.

Finally if 6, = 8k mod 2x, j ^ k, replace the pairs of terms in (3.1), (3.2) by a single
term in each case using the solution t, r of the system

(T - Z) In r = (T — <,) In r, + (T — tk) In rk ,

In r = In r,- + In rk .

One verifies that

(< - t,) : (tk - t) = In rk : In rt = (t,- - t) : (t - tt);

hence that t is on the interval [0, T],
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Reductions of the several types can be applied and remaining values (3.7) relabeled
so as to yield a reduced set

(7-0 , ?"l t ' ' > ) @0 ) @1 t ' ' ' 1 t J * J tm—l) , TO ^ 71, (3.8)

satisfying the restrictions

r0> 1, rm > 1; r4 > 1, i = 1, • • • , (to - 1), (3.9)

Oj 6k mod 2tt, j ^ k, (3.10)

<0 = 0, tm = T

0 < U <T, i = 1, • • • , (to — 1), (3.11)

ti tk , j ^ k.

By the reduced auxiliary problem or reduced problem for short we mean the problem
of minimizing (3.1) subject to side conditions (3.2), (3.9), (3.10), (3.11). The range of
summation will now be denoted by to as a reminder of the reduction process. Since
the auxiliary problem has a solution the reduced problem necessarily has a solution.
Moreover a solution of the reduced problem is a solution of the original auxiliary problem.

4. Application of Lagrange multipliers. Consider the problem f(x) = minimum
subject to constraints <pi(x) = 0, • • • , <pa(x) = 0, in which x denotes (x, , • • • , x?)
and a < 13. The usual multiplier process yields a necessary condition on a minimizing
point X provided that (see for example [2, pp. 544-547]) X is an interior point of the
set on which a minimum is sought and provided that the a by /3 matrix of derivatives
of <pi , • ■ • , <pa with respect to xl , • • • , x$ is of rank a.

In the proofs of Sec. 5 the interior nature of the minimizing point follows from
selected strict inequalities (3.9), (3.11). One can verify that the matrix has the required
rank in each case. Further mention of this condition omitted.

Let R, A, B, C, D denote respective left members of (3.1), (3.2) for the reduced
problem, let Xj , • • • , X4 be multipliers, and let F = R + X, A + X2S + X3C + \tD.
We record for reference that

dF/dri = — [1 + \i(T — ti) cos 8i + X2(T — ti) sin + X3 cos + X4 sin 0,],

dF/ddi = In r,f—X^T — t,) sin 0, + \2(T — t,) cos — X3 sin 0, + X4 cos 0,].

dF/dti = — lnr\[X, cos 0, + X2 sin 0,].

We shall use certain of the equations

dF/dr{ = 0, i = 0, • • • , to, (4.1)

dF/ddi = 0, i = 0, • • • , m, (4.2)

dF/dti = 0, i = 1, • • • , (to — 1). (4.3)
5. Properties of a solution of the reduced auxiliary problem.

Let
(To , " j j $0 ; ' , Om , tl , * ' ■ , tm-i) j (5.1)

denote a solution of the reduced problem.
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Theorem 5.1. A solution (5.1) can include at most one mass ratio r, greater than unity
whose subscript differs from 0 or m.

Proof. Suppose that r,- > 1 ,rk> 1, j k, and that neither j nor k is 0 or m. Con-
sider the minimum of (3.1) in six variables r, , 0< , t{, i = j, k subject to four constraints
(3.2) with other variables fixed at values (5.1).

From (4.3) with i = j, k

X, cos 0, + X2 sin 0, = 0,

Xi cos 6k + X2 sin 6k — 0.

It follows that either X, = X2 = 0 or in view of (3.10) that 6, , 6k differ by an odd
multiple of v.

Under the first alternative we see from (4.1), (4.2) with i = j that X3 = —cos 0,
and X4 = — sin 0, . Similarly with i = k, X3 = — cos 6k and X4 = — sin dk . Such results
contradict (3.10); hence cannot occur.

Under the second alternative we have from (4.3) and (4.1) for i = j that X3 cos
0,- + X4 sin 0, = — 1 and for i = k the contradiction that X3 cos dk + X4 sin 0* = — X3 cos
0, — X4 sin 0,- = — 1.

Theorem 5.2. If r0 > 1 in a solution (5.1) then r( = 1, i = 1, • • • , (m — 1).
Proof. Suppose that r0 > 1 and that r, > 1 for some fixed j between 0 and (m — 1)

inclusive. Consider the minimum problem in five variables ra , r, , 0O , 0, , with all
other variables fixed at values (5.1). From the five equations consisting of (4.1), (4.2)
for i = 0, j and (4.3) for i = j we obtain relations

Xj cos 0, + X, sin 0,- = 0, (5.2)

X3 cos 0, + X4sin 0, = —1, (5.3)

(T — <0)(Xi cos 0O + X2 sin 0O) -f X3 cos 0O + X4 sin 0O = —1, (5.4)

(T — <o)( — X, sin 0O + X2 cos 0O) — X3 sin 0O + X4 cos 0n = 0, (5.5)

(T — tj)( — \i sin 0, + X2 cos 0,) — X3 sin 0,- + X4 cos 0/ = 0. (5.6)

Solving (5.2) and (5.5) for Xx , X2 we find that

Xi = —(sin 0,)(X3sin 0O — X4 cos d0)/(T — t0) cos (0, — 0O),

X2 = (cos 0/)(X3 sin 0O — X4 cos 60)/(T — t„) cos (0, — 0O)-.
(5.7)

If cos (0,- — 0O) were zero then X3 sin 0O — X4 cos 0O = 0, which contradicts the result
obtained from (5.3) by replacing cos 0, , sin 0,- with — sin 0O, cos 0O . Thus denominators
in (5.7) cannot vanish.

From (5.6), (5.7)

X3[sin 0, - {T - <,)(sin 0„)/(T - t0) cos (0, - 0O)] ^

+ X4[—cos 0, + (T — tj)(cos 0O)/(T — to) cos (0, — 0O)] = 0,

while from (5.8), (5.3) with the fact that t0 = 0,

X3 = (T/t,)[— cos 0,- + (T — tj)(cos 0O)/T cos (0, - 0O)], ^

X4 = (T/t,)[—sin 0, + (T — <,)(sin 80)/T cos (0,- — 0O)]..
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Substitute (5.9) into (5.7) and find that

Xi = —</_1 sin 9j tan (0,- — 0O), X2 = tj1 cos 0, tan (0,- — 0O). (5.10)

Finally substitute (5.10) and (5.9) into (5.4), which reduces to cos (0, — 0O) = 1,
in contradiction with (3.10).

Theorem 5.3. If r„ > 1 in a solution (5.1) then r( = 1, i = 1, • • • , (m — 1).
Proof. The proof follows that of Theorem 5.2 as far as (5.6) with subscript 0 re-

placed by m. We now understand this change to have been made in (5.2), • • • , (5.6).
The proof now diverges as a result of the fact that (T — im) = 0. From (5.4), (5.5)

accordingly reduced X3 = — cos 9m , X4 = — sin 0„ , which with (5.3) again contradicts
(3.10).

The following theorem summarizes results of Sec. 3, 5. For completeness the trivial
case in which T — 0 and m — 1, thus far excluded from our formulation, is included
as (v).

Theorem 5.4. The auxiliary problem necessarily has a solution of one of the following
types

(i) r0 > 1, r„ > 1, each other ratio = 1,
(ii) ra > 1, each other ratio = 1,
(iii) rm > 1, each other ratio = 1,
(iv) r,- > 1 for one jV 0, m and each other ratio — 1,
(v) m = 1, r0 > 1 and each other ratio = 1.
Theorem 5.5. If the auxiliary problem has a type (iv) minimum it also has a type

(i) minimum.
Proof. Let h, H respectively denote the expressions av — bu, aV — bU and let

R denote the positive square root of (U — u)2 + (F — v)2. If a type (iv) solution exists
elementary relations among distance, speed, and time imply that

T = (h — H)/(vU - uV). (5.11)
Moreover

c (min ln r>) = (5.12)

If we now solve (3.2) with m = 2 and r, = 1, taking the preassigned T to be (5.11)
we find that

c £ Inr,- = R{[h2/(h - H)2f2 + [H2/(h - H)2]1'2}.

The stated conclusion follows from (5.12) and the fact that the above expression in
braces cannot exceed unity.

6. Solution of the original problem. Let (M, 0, x, y) be any admissible quadruple
satisfying terminal conditions (2.2). It is convenient to the application below of a
convergence theorem for Stieltjes integrals to consider a sequence M, of step functions
converging to M or the interval [—1, T + 1] except possibly at discontinuities of M.
(Any other closed interval to which [0, T] is interior would do.) Such a sequence M,
can be obtained using a suitable nested sequence P, of partitions of [0, T}. Define My(t)
for — 1 < t < 0 as 3/(0—), for T < t < T + 1 as M(T+) and for each of the disjoint
half-open subintervals whose union is the half-open interval [0, T] as the mean of M
over that subinterval. Let 0, be any sequence of continuous functions converging uni-
formly on [— 1, T -f 1] to 0; in particular take 0, = 0, v — 1, 2, • • • .

A well-known theorem ([3, p. 283, Theorem 23]) insures that the sequences
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u,(t) =c cos Bv dp., + u,
Jo

v,(t) = c [
Jo

sin 6, d\Lt + v,

(6.1)

converge for 11 [— 1, T + 1] except for i a point of discontinuity of M. (See Hypothesis
B, , [3], p. 281). Moreover limits of right members of (6.1) are right members of the
first two equations (2.1) written for the M, 6 given above except for the countable
set of discontinuities of M.

The ordinary bounded convergence theorem then insures that

c,(t) = [ w,(r) dr, y,(t) = [ v,(r) dr,
Jo Jo

(6.2)

converge to the admissible trajectory x, y included in the admissible quadruple with
which we started.

The position (a, , b,) given by (6.2) and velocity (U, , V,) given by (6.1) for t = T
may differ from values (2.2) but uv(T+), v„(T+), xv{T), y,(T) necessarily converge
to respective values (2.2).

By Theorem 5.4 there is a step function M* with at most two steps and a continuous
function 0* whose values at the discontinuities of M* together with M* define a solution
to the auxiliary problem with terminal position (a„ , b,) and terminal velocity (U, , V,)
at T. Hence

In [M*(Q-)/M*(T+)] < In [My(0-)/Mr(T+)]. (6.3)
Each M* is of one of the types enumerated in Theorem 5.4; hence through possible

extraction of subsequences we can suppose all sequences on v so chosen that each M* ,
v = 1, 2, * • • , is of the same type and such that M* converges to a limit M* on [—1,
T + 1], which is necessarily a step function with at most the same number of steps
as M* . Function 0* can be taken as constant or linear according as M* has one or
two steps. We can suppose 6* convergent to a limit 9*, again by restriction to suitable
subsequences. Terminal position x*(T), y*v(T) and velocity u*(T+), v*(T+) deter-
mined by M* , 6* , and (2.1) converge to values (2.2) as observed above.

Passage to the limit in (6.3) shows that

In [M*(0-)/M*(T+)] < In [M(0-)/M(T+)];
hence that the particular admissible quadruple (M*, 6*, x*, y*) is at least as good as
(M, 6, x,y).

Accordingly the minimum problem stated in Sec. 2 has as a solution any solution
of the auxiliary minimum problem.

To solve an example refer to the possibilities of Theorem 5.4. Since at most four
quantities are subject to four side conditions (3.2) multipliers are not applicable at
this stage. One or more solutions to the example are provided by (3.2) with n = 2.

7. Examples.
(■u, v) (U, V) (a, b) T type c (Min 2 In r<)
(0, 1) (0, -2) (1, 0) 1 (i) 2,/2 + 5,/2

(1, 0) (2, 0) (2, 0) 1 (ii) 1
(1, 0) (2, 0) (2, 0) 2 (iii) 1
(1, 1) (2, -2) (2, 0) 2/3 (iv) 101/2
(1, 1) (4, -2) (2, 0) 1 (i) or (iv) 3 (2),/2
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8. Variable transit time. The minimum of M(0—)/M(T+) denoted by X is a
function of transit time T. If the problem is altered by allowing T to vary over the
non-negaitve reals the solution when it exists is available by the present paper plus
a minimization with respect to T. There are cases in which no minimum exists, e.g.
(u, v) = (0, 0), (U, V) = (—1, 0), (a, b) = (1, 0). For each fixed T we have a Type 1
solution. Inf X(T) is approached as T —* °° but is never attained.

9. Concluding remarks. The reviewer has called attention to a forthcoming paper
by E. W. Graham in the Journal of the Aero/Space Sciences which may overlap the
present results and which includes uniform fields. That the uniform field case is mathe-
matically equivalent to the free space problem can be seen as follows. In the first two
equations (2.1) add respective constant multiples 2 A T, 2BT of t; hence in the last
equations (2.1) add AT2, BT2. In the respective equations (3.2) we must then replace
a, b by o(l - T2), 6(1 - T2) and replace U, V by U - 2AT and V - 2BT. Subject
only to these substitutions all present results apply.

Among questions for which only partial theories appear to exist are the following.
If terms representing a general gravitational field are included in (2.1) as in [4],

for what non-uniform fields is there an analog of Theorem 5.4, eliminating the need
for maneuvers with more than two null-thrust arcs like that of [6, p. 175, Fig. 6]?

If our problem is modified into Type 2 by adjoining a Lipschitz condition on M,
is an optimal maneuver realizable with at most two periods of maximal thrust?

With aerodynamic forces also present we have the possibility of time intervals on
which M decreases continuously in addition to possible coasting periods together with
impulsive burnings or periods of maximal thrust according as the problem is of Type 1
or 2. An extension of Theorem 5.4 coupled with proof of the existence of a best program
should be of interest.
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