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CONDUCTION-CONVECTION FROM A CYLINDRICAL SOURCE
WITH INCREASING RADIUS*

BY

H. R. BAILEY
The Ohio Oil Company, Littleton, Colorado

Summary. The problem of heat flow by conduction and convection from a
cylindrical source with increasing radius is solved. A quasi stationary state solution is
obtained for the case of a finite convection coefficient and with the radius increasing at
a constant velocity. A transient solution is obtained for the case of an infinite convection
coefficient and with the radius increasing at a rate proportional to the square root of
time.

In the latter case an explicit evaluation of an integral form of the solution is obtained
by showing that the solution, in a certain coordinate system, is independent of time
and thus the partial differential equation reduces to an ordinary differential equation
which is solved explicitly.

Introduction. The theory of heat flow from a moving source is of interest in a
number of applications; some of these are discussed by Crank [5]f. Most of these appli-
cations are concerned with heat conduction from a moving plane source.

The problem of heat flow from a cylindrical source with increasing radius has been
studied by H. R. Bailey, B. K. Larkin and H. Ramey, [1], [2] and [9]. This problem arises
in connection with a secondary oil recovery process by underground combustion. The
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papers mentioned above are mostly concerned with the conduction mechanism for heat
flow; however, Ramey [9] does give an approximation of the convection effects. Heat
flow by conduction and convection, without moving sources, has been studied by Bland
[4] in connection with heat exchanger applications.

In the present paper we consider heat flow by conduction and convection from a
cylindrical heat source with increasing radius, r = r, , as shown in Fig. 1; gas (air) is
injected at r = 0 into a porous solid of infinite extent and it is the oxygen from this
air that supports the combustion. With certain simplifying assumptions (see Bailey and
Larkin [3]) the equations describing this process can be written in the form

d2T, 1 dT. , dT. , , . . , P(t) dT
~d?~ + r¥" *(r' 0 ~ 1 k{T- (1)

where T, is the temperature of the solid, T is the temperature of the gas, k is the con-
ductivity of the solid, a2 is the reciprocal diffusivity, h is the convection coefficient, r is
the radius, t is time, <£>(r, t) is a source function and P(t) is a function of time whose
form depends on the air injection program. From the second equality in system (1), we
have

T--r + ̂ f -r + E<r,«f,
where the identity is a definition of E(r, t). With T, replaced by the above expression,
system (1) can be written as a single partial differential equation:

d\T + E dT/dr) 1 d(T + E dT/dr)
dr2 r dr

(2)
_ d(T + E dT/dr) + ^ _ k-lfiE = o

ot or

The functions P(t) and $(r, t) depend on the assumed air injection program; two
cases are of particular interest in underground combustion: (a) constant velocity,
r, = vft, where vt is a constant, in this case it is shown in [3] that P(t) = /ci v)t and
4>(r, I) = qvfd(r — rf), (b) constant injection rate, r2 = 2Ut, where U is a constant, in
this case it is shown in [3] that P(t) = 2n where n is a constant and <I>(r, t) — qUrJ1
8(r — rf). In the above equation fci and q are constants and S(r — rf) is the Dirac delta
function.

In Sec. 2 of this paper a quasi-stationary state solution of Eq. (2) is obtained for the
constant velocity case. Solutions of Eq. (1) are obtained in Sec. 3 for an instantaneous
cylindrical source and for a cylindrical source with increasing radius (i.e., the constant
injection rate case). This latter solution is obtained in the form of an integral which is
evaluated explicitly in Sec. 4.

2. Quasi-stationary state solution for the constant velocity case. In this section
a quasi-stationary state solution of Eq. (2) is obtained for the constant velocity case,
i.e., rf = Vft with v, a positive constant. Clearly there would not be a steady state solution
in the usual sense; however, it is assumed that an observer moving with the source
would see steady state attained for sufficiently large values of time. This assumption is
discussed by Jacob [7],
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Putting r = s -\- vft transforms Eq. (2) into

d\T + E dT/ds) 1 d(T + E dT/ds) 2 d(T + E dT/ds)
ds2 s + Vft ds f ds ^

2 d(T + E dT/ds) hE dT , qvf _ n~a  Tt TaF + Ta(s) = 0'
where E = k P(t)/h{s + vft) = kkx v)t/h(s + v,t). The variable s measures the radial
distance from the moving source, and the assumption that quasi-stationary state is
attained means that T(s, t) does not change with respect to time for sufficiently large
and finite s. Thus, passing to the limit as t —» , Eq. (3) is reduced to the ordinary
differential equation,

d3T , d2T 2p d'T . 2 dT , dT . ...Sr+Sr + ', '57" + 0"'"S_ ~S~ ' (4)
where the last term in Eq. (3) is replaced by the equivalent boundary condition, (a),
below. The term kxvf dT/ds is the limiting form of the corresponding term hE/k dT/ds
in Eq. (3), this follows from the definitions in Sec. 1 of E(r, t) and P(t) for the constant
velocity case.

The boundary conditions are:

(a)
dT.
ds

dT. dT
ds

dT

+ E^c?T
ds2 -E& -Wr

k '

(b) dT
1

«-0—

dT
ds

(c) T remains bounded as s •
(d) T —> 0 as s —> — oo (

where dT/ds |,.0+ and dT/ds |,.0- are the right and left hand derivatives respectively
at s = 0.

Condition (a) is equivalent to the source term in Eq. (3). Condition (b) results from
the assumption that dT/ds is continuous at s = 0, i.e., that the heat source is only in
the solid phase. Conditions (c) and (d) follow immediately from heat balance considera-
tions for a moving source.

The general solution of Eq. (4) is of the form T = C0 + Cx exp (ns) + C2 exp (r2s)
and it can be seen from the characteristic equation determining rx and r2 that they are
both real and negative, provided ft, is less than a2 which is the case in underground
combustion. Thus, in order to satisfy boundary condition (c) for s < 0, we must have
Ci = C2 = 0. For s > 0, and to satisfy boundary condition (d), we must have C0 = 0.
Imposing boundary conditions (a) and (b) results in the following solution of (4) subject
to conditions (a), (b), (c) and (d).

f —  —1  s < 0(R - S)a2k S U (5)

T - /exp [(-1 — R + W)s/2E] _ exp [(-1 — R - W)s/2E]\ > n
a2kW \ I+ R -W 1 +R + W J '

where R = a2Evf , S = k,Evf W = [(1 - R)2 + 4S]1/2.
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Figure 2.

The above solution is also a solution for the corresponding linear problem of a plane
source moving at a constant velocity in a semi-infinite medium. This follows from the
observation that a cylindrical source approaches a plane source for sufficiently large
radii.

If it is assumed that conduction is the only mechanism for heat transfer then the
corresponding formula for the temperature has been obtained [1] by determining the
limit, as t —» oo of an explicit solution of the partial differential equation. The latter
method is more difficult; however, it is more satisfying since it is not necessary to make
the a ■priori assumption that a quasi-stationary state will be obtained.

It is shown in [3] that R - 5.18 S if the injection gas is air; Fig. 2 shows the temper-
ature profiles for this case. The temperatures are given in terms of the temperature
fraction, r = T/(q/a2k).

3. Transient solutions for the constant injection rate case. In this section explicit
solutions of Eq. (2) are obtained for the constant injection rate case, r) = 2Ut, assuming
infinite convection coefficient, h. With these additional assumptions we have E = 0,
and P(t) = 2n, where n > 0 is a constant depending on the parameters in the physical
problem. Equation (2) thus takes the form

d2T , 1 - 2ndT , dT , A „5^+—j——-a-jf+t «r,«- 0. (6)

In the following analysis two forms of the source function, $, are considered: (1) an
instantaneous cylindrical source, (2) a continuous cylindrical source with increasing
radius.

3.1. Instantaneous cylindrical source. Consider a cylindrical source with radius r0
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which liberates one unit of heat per unit area at time t0 . In this case $ can be represented
in terms of Dirac delta functions and Eq. (6) becomes

d2T ,1-2ndT 2dT ,jpr H   ~ a — + k 5(r - r0) S(t - tB) = 0. (7)

The substitution T = Sr" transforms the above equation into

d2s . i as 7i „ s as , ,
W r ~dr ~ dl T ~ r°) ( ~ °) =

Let R be the Hankel transform of S, e.g., [10], i.e.,

= f rJH(fr)S(r, t) dr.
Jo

Then taking the Hankel transform of the above equation gives

i2R - = -Af1 fo r'-JM 5(r - r„) 8(t - t0) dr

= -k~Y0-nJM 6(t - to).

Solving the above equation we obtain the particular solution

R = k-la-2r\-nJM exp [?2(« - t0)/a2]

and taking the inverse Hankel transform, e.g., [6], gives

S(r,t) = j" m, da
= 2- UTVr exp [—a2(r' + rl)/4(t - tQ)]In[rr0a2/2(t - Q].

Finally, from the transformation relating S and T, the following formula for the temper-
ature is obtained:

Tie = 2- t0)-V0-nrn exp [-a\r2 + r2)/4« - i0)]In[rr0a2/2(t - Q], (8)

where the subscripts ic have been added to T to indicate temperature due to an instan-
taneous cylindrical source.

For n — 0 the above expression for Tu reduces to the known, [1], solution for con-
duction only. For n > 0, it is indicated below that the solution has the required properties.

It can be shown by direct computation that Tic , for t > 0, satisfies

d2T , 1 - 2n dT 2 dT nrr H -r a — = 0.dr r dr at

Also, from the asymptotic form of In(z) for large z, it can be seen that Tic —> 0 when
t —* t0 at all points except on the cylinder r = r0 where Tic becomes infinite. By using a
generalization of Webber's first integral [11],

J exp (—a2u2)Jn(bu)un+1 du — ^a2)n+1 exP ^/4a2),

we have for t > l0

a2k / 2rrTic(r, t; r0 , t0) dr = 2xr0
Jo

which is the amount of heat liberated per unit length by the instantaneous source.
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3.2. Cylindrical source with increasing radius. It is reasonable, [2, 3], to assume in an
underground combustion process that the source function can be expressed by the
formula

$(r, t) = q S(r — rf) drf/dt,

where rf(t) is the radius of the cylindrical source, 5 is the Dirac delta function and q
is constant. The case of most practical interest is with constant air injection rate; and
in this case the position of the front is given by the formula, r2 = 2Ut, where U is a
constant.

With the source function described above Eq. (6) becomes

d'T .1 - 2n dT 2 dT qU
dr2 r dr ° dt kr,T H   ~ a T7 + 7— 5(r — r,) = 0. (9)

The solution of the above equation with T = 0 at I = 0 is given in terms of Tu , Eq.
(8), by the formula

T(r, t) = qU [ f Tic(r, I; r0 , t0)rj1 S(r - r,) dr0 dt0 ,
J 0 J 0

where r, is evaluated at t0 , i.e., r, = (2Ut0)1/2. Performing the indicated integration
with respect to r0 we obtain

T = 2~1k'1qUrn [' (2Uto)~n/\t - t0)~l
Jo (10)

•exp [-oV + 2Ut0)m ~ ta)]In[2-\t - Q-WrVUQ1'2] dta.

4. An explicit evaluation of the integral in Eq. (10). An explicit evaluation of the
above integral, Eq. (10), is obtained by applying a method introduced in [1] for the
case of conduction only. Making the substitutions y — r/r, and t = (t — ta)/t, Eq.
(10) is transformed into

T(y, t) = 2"VW jf r~\ 1 - r)"n/2 exp [-a*U(y2 + 1 - r)/2r] (n)
•Ur-WUyd - r)1/2J dr.

Thus T(y, t) is independent of t since t does not appear in the right side of the above
equation.

The transformation y — r/r, in the partial differential equation (6) gives

d2T , 1 - 2ndT , Jrr dT n 2rri dT n—2 H —F a Uy   2a Ut— = 0,
dy2 y dy ^ J dy dt

where the source term is replaced by boundary condition (b) below. Since we have shown
that T(y, t) is independent of t we have dT(y, t)/dt = 0 and the above equation becomes

d2T , 1 — 2ndT , dT n /iri^2 H "j + 2 By j- = 0 (12)dy y dy dy

where B = a2U/2.
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The boundary conditions are

(a) T = T0 at y = 0

_
► dy

(c) T-^0 as y —* °°.

Condition (a) corresponds to the inlet temperature of the injected gas. It should be
noted for the solution given by Eq. (11) that T0 = 0, and thus we have shown that
T(y, t) is independent of t only for T0 = 0. We shall assume that T(y, t) is independent
of t for any value of T„ and check the resulting answer to see that it satisfies the partial
differential equation and the boundary conditions. Condition (b) replaces the source
term, AT1 $(r, t) = qUk~lr~,x Ur — r,)\ that is the heat source at r — r, is equivalent
to a discontinuity in the temperature derivative at r = rf .

The ordinary differential Equation (12) can be solved either by making the sub-
stitutions z = By2 and T — We~' which reduce Eq. (12) to a confluent form of the
hypergeometric equation or by the substitution w = dT/dz and integrating the resulting
first order equation. The general solution of (12) is given by

T = C2 + C3T(n, By2), y > 1 ^

T = Kt + K3T(n,By2), y< 1

where r(a, b) is the incomplete gamma function defined by the integral

r(a, b) = J e~"u du.

Values of the incomplete gamma function have been tabulated, for example see Pearson
[8]. The constants C2 , C3 , K2 and K3 are determined by the boundary conditions (a),
(b) and (c), and the requirement that T be continuous at y = 1. These conditions lead
to the following relations respectively:

(a) T0 = K? + K3 r(n) where T(?i) is the gamma function
(b) - 2C3e~BBn + 2K3e~BBn = - qU/K
(c) C2 = 0

(continuity at y = 1) C2 + C3 T(n, B) = K2 + K3 T(n, B).
Solving the above equations for C2 , C3 , K2 and Ks and combining with Eq. (13)

we obtain

T = eBB "^n' By2) [Toe~BB" + 2-lk-lqU{Y{n) - r(n, B))}, y > 1
1W (14)

T = eBB~"qU2~1k~1T(n, B) + V?* ~ qU2-1k-1eBB-"T(n, B)], y < 1.

It can be shown by direct computation that the above expressions for T (with y replaced
by r/r, , r) = 2Ut) satisfy the partial differential equation (9) and the conditions T — 0
at t = 0, T = T0 at r = 0 and T —> 0 as r —> °°.

Figure 3 has been obtained by evaluating Eq. (14) for the case Ta = 0 and r/r, = 1.
The fractional temperature rise, r = T/ (q/a2K), is plotted as a function of a dimension-
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Figure 3*

less injection rate, 2B = a2U, for various values of a relative gas velocity y = n/B.
The curve 7 = 0 corresponds to assuming conduction only. The value y = 0.2 is typical
for an underground combustion process.

Remarks. (1) For n — 0 the Equation (14) reduces to corresponding result, [1], for
the conduction only case. In this case the terms in T0 do not appear, and thus the temper-
ature at r = 0 cannot be prescribed but is determined by the solution. For n > 0 the
temperature at r = 0 is prescribed and corresponds to the inlet temperature of the
injected gas.

(2) Since the solution is unique, we may equate the two solutions given by Eqs.
(11) and (14) (for T0 = 0) and obtain the following evaluation

r1 dr r r/f 2 j ' it (2yB(l — t)1/2\I T(i - T)-<> exp + w-x———j

zrv"r(n,£t/2)[i -

B-Vnr(n,B)[l

y > i

y < i.
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