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ON THE FLOW OF A VISCOUS ELECTRICALLY CONDUCTING FLUID*
by H. P. GREENSPAN (Massachusetts Institute of Technology)

The equations governing the steady two-dimensional flow of a conducting fluid
whose free stream direction is parallel to an applied magnetic field can be linearized,
by an extension of the Oseen treatment of viscous flows, and reduced to the dimension-
less form
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Here the stream function, \p{x, y) and vector magnetic potential A(x, y) are defined by
the relations

q = V X i(x, y) i3

H = V X A(x, y)i3 .

In addition, /3 = (nHl)/pVl), and e = ofiv. (H0 and V0 are the free stream values of
magnetic intensity and fluid velocity; the other symbols have their usual meanings.).
The details of the reduction can be found in Ref. [1].

A transform analysis of the flow past a rigid impermeable semi-infinite flat plate,
[1], results in a solution of the foregoing equations which is of the form

+ = (3)
A = £g(v),

with

(£ + iv)2 = x + iy.

Equations (1) and (2) admit general solutions of the form expressed in (3) and an
entire class of parabolic flow problems is then explicitly soluble in terms of known
elementary functions. Typical among these would be the flow in an aligned magnetic
field past a parabolic cylinder which may be injecting another conducting fluid into
the main stream. At least three different regions and possibly five independent param-
eters are involved in this complex interaction and an exact numerical solution of the
non-linear equations would require an immense amount of work. The linear theory,
however, affords an easy way of examining the qualitative effects of a variation of any
particular parameter on the fluid motion or magnetic field because explicit analytical
solutions are readily obtainable. In other words, a rapid qualitative survey of any
particular aspect of the phenomenon can easily be made using the linear theory and
this can then be followed by a quantitative analysis if the results warrant a more exact
investigation.
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The substitution of the functional forms of Eqs. (3) into (1) and (2) yield

'+<'' + «* -w>]

+ ^+7^[L2~l+"1 + «» - W'>] - 0
(4)

and

hg" + «(/ - vf - 9 + vg') = 0. (5)
The former equation is satisfied (fortuitously) if

fv W" -f+vf' + (3(9 - vg')] = o
i.e.,

hi" ~1 + vf' + Kg - vg') = K, (6)
where K is a constant. The general solution of Eqs. (5) and (6) is, for /3 < 1 (super-
Alfv£n flow)

Kv) + «i g(v) = a<>v + ax G-^ ~ ^ , (7)

Kv) + ot2g(ri) = bov + h — ~2 , (8)
CO CO

where

c( i r i ( V )Cr(v) = V erf V +  172 
IT

2S22 = 1 + e — X, 2co2 = 1 —f— e —X, X = ((1 — e)2 -f- 4e/3)1/2, 2ea1%2 — 1 — e dh X,

and a0 , Oi , b0 , bt , K are all arbitrary constants. If there is more than one parabolic
domain i.e. body plus fluid, the general solutions appropriate in each region must be
joined by matching conditions at the boundaries.

As a particular example consider the flow past a semi-infinite flat plate along which
the horizontal velocity component is zero and the vertical component is —d yf/(x, 0)/dx =
— V/2x*, x > 0 (the constant V is negative for injection and positive for suction). The
boundary conditions require that /(0) = V, g(0) = /'(0) = 0 and /'(00) = 2. The solution
is then

Kv)- 2, + Tao., + nsf - "''-"""Lii - «*.)-' ̂
L — <*2 J "

f^n , 1/2 F(fi2 — CO2) ~|, .-1 H(uv)— 2Slai + ir  ata2 — a2co)  ,L «i ~ «2 J w

g(ri) = 2r/ — (2w + irl/2V(il2 — co^aiXofjft — a^)-

-(- (2fi + irI/2V(Q2 — w2)a2)(aifl — a^u)

(9)

° (10)
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Fig. 1. The flow past a flat plate which is injecting fluid into the mainstream. Solid curves represent
streamlines and dashed curves are field lines. The injected fluid is the same as that of the free stream.

where
H(ri) = V erfc jj + 7t~1/2(1 — exp — ?;2).

A typical injection flow pattern is shown in Fig. 1. The two distinct flow regimes which
occur are separated by the zero streamline = £/(f) = 0. (That is, £ = 0 and x + rj2 =
frfr2 where /(jj) = 0.) The interior domain is occupied by the injected fluid and the
exterior realm consists of the fluid from the free stream. Two distinct magnetic fields
also occur; an induced field occupies the domain interior to £g(ij) = 0 and the applied
field occupies the exterior region. Descriptively speaking, the free stream lines are pushed
outward by the emerging fluid and drag the magnetic field lines behind them. The
induced interior magnetic field closely resembles the field of a semi-infinite solenoid of
current.

The solution of the more general problem involving the flow past a parabolic cylinder
(which may be injecting or drawing fluid or impermeable) can be solved in as straight-
forward a manner as the preceding example. The general solutions, valid in each region,
must be properly joined at the interface boundaries. Across the parabolic interface
separating two fluids it is required that the fluid velocity, viscous stress, tangential
component of magnetic intensity, V X Ai3 , and normal component of magnetic field
mV X Ai3 be continuous. (The latter two conditions hold across any surface.) This
corresponds to requiring the continuity of /, /", ng, and g'. The tangential velocity
component at the surface of a body is zero although the normal component may be
prescribed to simulate injection or suction. (It is necessary, however, to maintain a
parabolic flow.) The effects of magnetization can also be examined by prescribing a
non-zero boundary condition on g(0). The arbitrary constants are easily evaluated and
the solution is explicitly determined in terms of elementary functions, the most compli-
cated of which is erf 17. The location of an interface such as that between injected fluid
and free stream is obtained from the condition that it constitutes part of the zero stream
line £/(*/) = 0.

A particular solution, worth quoting because of its simplicity, is that for the perfectly
conducting flow past the impermeable parabolic cylinder 17 = ij*

Kv) = g(v) = 2(17 - „*) - erff(-_^;;;,m - py/2v) - #«i - 0)i/2v*)]-
The first term of the right hand side represents the inviscid solution and the second is
the viscous magnetohydrodynamic correction.
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The linear theory is, of course, grossly inaccurate near stagnation points of either
fluid or magnetic field. Other sources of extreme errors may arise because the actual
magnetic force is replaced by its component normal to the free stream direction. This,
for infinite conductivities, requires shear discontinuities to maintain the dynamic
equilibrium of current carrying interfaces. It should also be noted that the linearized
version of the infinite conductivity condition q X H = 0 need not require the alignment
of field and fluid if they are not already so directed somewhere within the perfectly
conducting region. If the linear theory is not applied to problems for which it is obviously
inappropriate, fairly good qualitative results can be expected.

Substantially correct quantative results may also be obtainable by rescaling the for-
mulae developed from this theory in accordance with the modification introduced by
Lewis and Carrier [2].
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