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A TWO-POINT METHOD FOR THE NUMERICAL SOLUTION
OF SYSTEMS OF SIMULTANEOUS EQUATIONS*

by

W. M. KINCAID
University of Michigan

1. Introduction. This paper is concerned with the problem, which arises frequently
in practice, of finding one or more solutions of a set of n simultaneous equations
<fi(xi , ■ • • , xn) — 0, i = 1, • • • , n, in n unknowns Xi , • • • , x„ . For convenience we
shall assume, as is usually true in actual cases, that the functions <p{ are analytic in a
region surrounding each solution of interest, although the approach we shall use would
remain applicable under much milder conditions.

While a wide choice of methods is available when the equations are linear, the same
cannot be said in the non-linear case. Simplifying the system by elimination is likely
to be laborious, and may be impossible if the equations are not algebraic. If the system
is to be tackled in its original form, about the only general procedures are Newton's
method and the method of steepest descent. Both of these require the repeated evalua-
tion of all n2 partial derivatives 3#,/3x,- . In addition, Newton's method involves the
solution of a set of linear equations at each step. The method of steepest descent does
not require this, but generally exhibits only first-order convergence, whereas the con-
vergence of Newton's method is of the second order in general.

These remarks do not mean that existing methods are useless, but they make it
clear that there is room for fresh suggestions. In the following section we shall presen-
an iterative method, believed to be new, that does not require the calculation of derivt
atives or the solution of sets of linear equations, and yet displays second-order con-
vergence. The method may be regarded as a generalization of the classical method
of false position for the solution of one equation in one unknown.

While experience with the method has not been extensive, it has been sufficiently
encouraging to suggest that the method is worthy of serious examination. It may even
be worth considering for the solution of linear systems. In this case the solution is
attained (apart from rounding-off errors) after a finite number of steps, and the volume
of computation appears comparable in magnitude with that required by existing methods.

2. Description of the method. Since the method of solution to be described is a
generalization of the method of false position, as stated earlier, a brief review of the
latter is in order.

Let j{x) = 0 be an equation in one unknown, and consider first the case where /
is linear. If the value of f(x) is computed for two distinct values a and b of x, its value
for all x is given by the identity

/O) = . 1 „ [0 ~ a)f(b) + (b - x)f(a)].
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Setting the right member equal to zero, one obtains

_ af(b) - bf(a)
Kb) - 1(a)

for the solution of the equation.
If / is non-linear, one can perform the same operation, obtaining the zero of the

linear function coinciding with / for x = a and x = b. The operation can then be repeated,
replacing a or 6 by the value of x thus obtained. Continuing in the same manner, one
obtains a sequence of values of x that will converge to the desired solution if the function
is well behaved and the starting points a and b are suitably chosen. The order of con-
vergence of this procedure, which is probably the most efficient form of the classical
method of false position, has been shown to be (1/2) [1 + (5)1/2] (see [1, 2]) and is thus
greater than 1. (By the order of convergence is meant the greatest value of k for which
the ratio 5„/5*_i is bounded, where S„_i and 5„ are the departures of two successive
iterates from the true solution).

Now let / be a real-valued function defined on a region of Euclidean n-space in-
cluding the points A(ai , • • • , a„) and 2?(&i , • • • , bn). By analogy with the one-dimen-
sional case, we may determine a new point X having the coordinates

X — " bjf(A) (i = l 2 ••• n) (1)X< ~ C 1,2> 'n) W

(provided f(A) ^ f(B), as we shall assume in similar cases henceforth). For convenience
(1) may be written in the abbreviated form

X = AfB. (la)
It is apparent that the point X thus determined lies on the line joining A and B,

and it follows from a slight generalization of our earlier statements that f(X) = 0 if /
is linear; speaking geometrically, X is then the intersection of the line AB and the hyper-
plane / = 0. Moreover, if A and B both satisfy another linear equation g = 0, the same
is true of X.

Making use of these ideas, one can set up a variety of methods for solving sets of
simultaneous linear equations. One such method has been proposed by Purcell [3].
Some of the methods may be applied to sets of non-linear equations as well. It is appro-
priate to refer to these as two-point methods in view of the character of the operation
defined by (1) on which the methods are based. The remainder of the present paper is
concerned with one method of this type, which possesses some particularly desirable
properties.

In the following we shall confine ourselves to the case of two equations

<t>i(X) s= ^(aa , x2) = 0, i = 1, 2,

in two unknowns, as it is illustrative of the general case. Without loss of generality,
we may suppose that 0(0, 0) is a solution. We shall assume that the vectors grad 4>i{0)
and grad </>2(0) are non-zero and non-collinear, so that the solution is a simple one.

We begin the process of solution by selecting three linear combinations /(X), g(X),
h(X) of <£i(X) and <t>3(X) in such a way that j{X) + g(X) + h(X) = 0, while any pair
of /, g, h are linearly independent. Thus the equations f(X) = 0, g(X) = 0, h(X) = 0
have the common solution 0, and the vectors grad /(O), grad g(0) and grad h(0) are
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non-zero and point in three different directions. The reason for introducing an additional
equation will be indicated in a moment.

We select three initial points Rt , Si , Tx . Making use of the operation defined by (1),
we locate successively the points

SI = RifSl , T[ = R1fT1 , R> = SigRl , (2)
T2 = SigTi , R2 = T2hR[ , S2 = T2hS[ .

The equations (2) represent one iterative cycle. The next cycle proceeds in the same
way, with R2 , S2 , T2 in place of Rx , Sx , Tx .

If the functions /, g, h are linear, the lines SIT[ and R2T2 coincide with / = 0 and
g = 0 respectively; thus T2 (also R2 , S2) coincides with 0. If the functions are non-
linear, but not too badly so, one expects these relations to hold approximately, and
in this case R2S2 should coincide approximately with h = 0. Thus if all goes well, suc-
cessive cycles should yield a sequence of approximately similar triangles converging on 0.

The fact that the sides of the triangles approach distinct fixed directions is important.
For otherwise one of the triangles might collapse to a line, in which case all succeeding
points would lie on the same line, and the solution could not in general be attained.
It was with these considerations in mind that the two original equations were replaced
by three.

The foregoing discussion is of course quite heuristic. We shall show later that it
can be made rigorous if the initial points satisfy suitable conditions.

3. Useful definitions and lemmas. Interpreting a point P in the plane as a vector
from 0 to P, we may define the linear functions

u(P) = P-U, v(P) = P-V, w(P) =P-W, (3)
where

U = grad /(O), V = grad g(0), W = grad h(0). (4)
Thus u(P), v(P), w(P) coincide respectively with the linear terms of the Taylor ex-
pansions of /, g, h about 0. Hence

u{P) + v(P) + w{P) = 0. (5)

We see that any pair of the three numbers u(P), v(P), w(P) may be regarded as a linearly
transformed set of coordinates of the point P; this interpretation will underlie our
subsequent discussion. The 'axes' u = 0, v = 0, w = 0 are the respective tangents to
the curves f = 0, g — 0, h = 0 at 0.

The non-linear parts of /, g, h are given by the functions

F(P) = m - u{P), G(P) = g(P) - v(P), H(P) = h{P) - w(P). (6)
For any two points P, Q in an appropriate neighborhood of O, we have by the mean
value theorem

F(P) - F(Q) = (P - Q) ■ grad F(8P + (1 - B)Q) (7)
for some 6 in [0, 1]. Since grad F(0) = 0 and F is analytic (in x, y and thus in u, v)
near 0, there exist positive constants A' and K' such that

| grad F(P) | < 4'max (| u{P) |, | v(P) |) (8)
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whenever max (| u(P) |, | v(P) |) < K'. It follows from (7) and (8) that

I F(P) - F(Q) | < A'p(P, Q) max (| «(P) |, | u(Q) |, | v(P) |, | v(Q) |), (9)
(where p(P, Q) is the ordinary Euclidean distance between the points P and Q) for
max (| u(P) |, | u(Q) |, | t>(P) |, | v(Q) |) < K'.

These relations make it convenient to define the norm || P — Q || of a vector P — Q
by the relation

|| P - Q || = max (| u(P) - u(Q) |, | v(P) - v(Q) |, | w(P) - w(Q) |). (10)
In particular, we write

|| P || = || P - 0 || « max (| u(P) |, | v(P) |, | w{P) |). (11)

Clearly the norm, so defined, has the usual required properties, and the ratio
|| P — Q ||/p(P, Q) has positive upper and lower bounds. Thus from (9), (10), and (11)
we conclude that there exist positive constants A and K such that

I F(P) - F(Q) | < A || P - Q || max (|| P ||, || Q ||) (12)
for max (|| P ||, || Q ||) < K. In particular,

| TO I < A ||P IT for ||P || <K. (13)
Repeating the same arguments, we may suppose A and K so chosen that (12) and (13)

hold with G or H in place of F.
We note at this point that (5) and (11) can be combined to yield

|| P || = min (| w(P) | + | v(P) |, | u(P) | + | w(P) \, \ „(P) | + | w(P) |); (14)

a similar relation holds for 11 P — Q \ \.
Finally, we introduce

ru(P, Q) = max
u(P) — u(Q)
v(P) - v(Q)

u(P) - u(Q)
w(P) — w(Q) ) , (15)

with similar definitions for r„(P, Q) and rw(P, Q). We see that r„(P, Q) may be regarded
as measure of the difference in direction between the line PQ and the line u = 0; paral-
lelism corresponds to ru(P, Q) = 0.

From (10) and (15), we have

|«(P) -u(Q) | <ru(P,Q) ||P - Q ||. (16)
On the other hand, if v(P) ^ v(Q), one obtains from (14) and (15)

II P — Q || < | «(P) - u(Q) | + | v(P) - v(Q) |

= | »(P) - v(Q) u(P) - u(Q)
v(P) - v(Q) + 1 (17)

< | v(P) - v(Q) | (ru(P, Q) + 1).

The inequalities (16) and (17) are clearly valid for any permutation of the letters u,
v, w. Geometrically, (17) implies that if PQ is nearly parallel to u = 0, the 'distance'
between P and Q can be only slightly greater than the difference between their v- (or w-)
coordinates.
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4. Convergence of the process. In view of the foregoing remarks, the sequence
of points defined by (2) will converge to the desired solution if and only if

lim || Rn || = lim || Sn || = lim || Tn || = 0. (18)
»—»oo n—»co n-*»

We shall prove the following result.
Theorem. Under the assumptions stated previously, the sequence defined by (2)

will converge to the solution at 0 if the initial points Rx , Si , 2\ , satisfy the conditions

max (|| ||, || S> ||, || T\ ||) < min , |k) , (19)

where A and K are the constants appearing in (12), and

max [r„(/S! , 2\), rt(#i , Ti), , SO] < (20)

Geometrically, the conditions (19) and (20) mean that the points Ri , St , Tx lie
within a specified neighborhood of 0 and that the sides of the triangle RiSiTi are approxi-
mately parallel to the lines u = 0, v = 0, w = 0. As will become evident, other com-
binations of constants could be used in (19) and (20); the important point is that some
sufficient set of bounds can be given.

Writing M„ = max (|| Rn ||, || Sn ||, || Tn j|) for n = 1, 2, • • • , we see that to estab-
lish the theorem it is sufficient to show that the stated hypotheses imply (a) that there
is a constant p < 1 such that M2 < pM1 , and (b) that (20) is satisfied with R^ , , Ti
replaced by R2 , S2 , T2 . For if (a) and (b) hold, the same argument can be used to
show that M3 < pM2 , Mt < pM3 , etc., from which (18) follows immediately.

As one would expect, the proof requires repeated use of the inequalities (12), (16),
and (17). For (12) to be applicable, the points involved must have norms <K, as is
true of the initial points R,. , S, , 7\ by hypothesis. For (16) and (17) to be applicable,
directional conditions analogous to (20) must be satisfied. Defining

Mn = max (|| Ri ||, || ||, || T[ ||),

M12 = max (|| R[ ||, || S[ ||, || T2 ||),

we see that these requirements may be met by establishing the inequalities

(21)

Mu < K, ru(S{ , TO < ^ < K, r,{R[T>) < (22)

An outline of the proof will now be presented, followed by a more detailed discussion
of some specific points.

Making use of the properties of the initial points, we begin by deriving the results

1] AMmax [| u(S!) |, | u(Ti) |] < || Rt || 1Q _ iSm, ~ 0,111 11 Ri (23)

and

max [| w(S[) |, | v(T[) |] < || R, || ^ lA1 H (24)
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from which follow, in view of (14), the relations

Mu < 1.22 || R, || < 1.22Mi < .92K, AMU < .0611. (25)
The next step is to establish the inequality

r.iSiTO < g < -0651- (26)

The results (25) and (26) permit the relations (12), (16), and (17) to be applied
to the triangle ftS^T[ , in line with the reasoning outlined earlier.

In an analogous manner, one obtains the further inequalities

M12 < 1.251 || R1 || < .94A", AM12 < .0626, (27)

and

r.(ftTs) < 9 < -0807' (28)

thus showing that the triangle R[S[T2 also has the desired properties.
Since T2 would coincide with the solution point if the functions / and g were linear,

one would expect 11 T2 \ | to be sharply bounded. In fact, one can show that

U(t) i < i u(T') i +r.(m)iiTni[i + Aiirnntt(i») I _ I ttUJ I + 1 _ AMu[l + r^'TO]

< .111 || R, || + || T[ || 1°!511(10+1^11i) < .201 || ^ || (29)

and

I v(t2) | < || si || 10 -Auamu - ■168 11 Rl (30)

so that by (14) we have

II T. || < .369 ||fia ||. (31)
Identical arguments, applied to the triangle R2S2T2 , yield the inequalities

lift || < .254 ||ft ||, || S2 || < .282 ||ft ||, (32)
which together with (31) imply the relation

M2 < .369Mx . (33)
Thus assertion (a), stated at the outset, is verified.

By a further repetition of previous arguments, one obtains

r.(RA) < 9 < .0829. (34)

Clearly (26), (28), and (34) constitute a verification of assertion (b). Thus the proof
is completed.

To a large extent, the arguments used in establishing successive steps of the preceding
outline are variations on a single theme. Accordingly, only one or two steps will be
considered in detail.
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To begin with the proof of (23), we have in view of (2), (3), and (6)

,= umnst) - «(&)/(g.) = «(g,)F(g,) - uiswm
K l} KS,) - /(BO u(S,) - «(/?,) + F(S0 - F(R,)

F(S,) - F(R,) _
Bl) mQSQ - u(R>) F(R,)

F(S,) - F(R,)
+ uiS,) - u(R,)

By (12), (17), (19), (20), and (21) we obtain
F(S,) - F(R,)
u(S1) - u(R,)

F(Si) - F(R,) | H S, -R, H
II 5i - Ri || "|«(5,) -«(Bi)

< 4[max (|| R, ||, || S, ||)][i + r„(R,S,)] (35)

< li AM, .

Combining these results with (11), (13), and (19) gives us

I u(Ri) | M AM, + A || ||2
I «(S0 I < —ji < II *. II in - uam - 0111 11 Rl II'

1 - ^ AM, 1 '

and repeating the argument with S[ replaced by T[ yields (23).
The proof of (24) starts with the decomposition

+ nRl)]
W(so = .(go + ^ T(s,)-f(r,) ' <36>

+ u(R,) - u(S,)

and proceeds in much the same way. The proof of (26) likewise involves similar argu-
ments, starting with the identity

u(R,) - u(T,) f(R,) - f(T,)
u(S',) - u(T',) _
v(S[) - v(T[)

u(S,) - u{TQ KS',) - j(T,)
v(R,) - v(T,) f(Rt) - f(l\)
v(S,) - v(T,) /(SO - f(T,)

(37)

The proofs of (27) and (28) require the use of (25) and (26), but involve no new
ideas. The proof of (29) begins with a step analogous to (36), and uses the bound on
I u(T',) | given by (23). The remaining steps fall into the same pattern.

Corollary. Under the hypotheses of the preceding theorem, convergence is of the
second order at least.

This result is easily established. Referring to (23) and replacing AM, by its bound
0.05 in the denominator, we obtain

| u(S',) | < 2.22AMI ;
likewise,

| u{T[) | < 2.22.4Mi .
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Similarly, from (26)

r.(S!TQ < 1.30AM, .
Substituting these results in (29) and taking account of (25) and (26) yields

Since from (30)

we get

Similarly,

* I < 2.22AM! +

= 4.02AM*.

| v{T2) | < 2.17AM] ,

|| 1\ || < 6.194M! .

|| R2 || < 3.61AM? , || S2 || < 4.48AM? .
Thus M2 < 6.19AM? , which establishes the corollary.

Actually the convergence appears to be slightly faster than second-order, since
w(R2) and w(S2) are of the order of M\ .

5. Numerical example. To illustrate the application of the foregoing ideas, we
may consider the set of equations

j(x, y) = x2 - Ay = 0, g(x, y) = y2 - 2x + 4y = 0, (38)

to which we may add

h{x, y) = ~f(.x, y) - g(x, y) = -x2 - y2 + 2x = 0. (39)

One of the common solutions of these equations is (0, 0). Taking for starting points
Ri(Q, 1), /Si(1, —2), Z\(— 1, —1), and applying (2) yields the sequence of points listed
in the table and shown on Figs. 1, 2, and 3. The accelerating character of the convergence
is evident, as is the tendency of the points to form similar triangles.

One aspect of the computation deserves further discussion. The point R2 , which
is conceptually an approximation to the point of intersection of the line R[T2 and the
curve h = 0, happens to fall very close to the curve / = 0. In consequence the points
R2 , S2 , T2 are much closer to each other than to the solution point, and a considerable
extrapolation occurs in determining the points R2 and T3 . While no difficulty arises
in this example, it is apparent that if R2 had actually fallen on / = 0, the points S2
and T'2 would have coincided with R2 , and R'2 and T3 would have been undetermined;
in a practical computation, where round-off errors must be allowed for, something
less that exact coincidence could cause serious trouble. A number of expedients may
be imagined for meeting this problem, and are now under consideration.

From (38) and (39) we find readily

u = —4y, v = — 2x -f 4y, w = 2x, (40)

and

F = x2 ~ \w2, G = y2 = y^u2, H = — x2 — y2 = — \w2 —
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TABLE
Example of Iterative Solution

x y I g h

Tx -1.0 -1.0 5.0
S i 1.0 -2.0 9.0
Ri 0.0 1.0 -4.0 5.0

T[ -.444 .111 1.344
Si .308 .077 -.302 .515
R[ .290 .130 .479
Tt .170 . 083 -.303 . 304
S-t -.0290 .0917 -.366
R2 -.0389 . 0012 -.00329 . 0826

T'i -.0412 . 00030 . 0836
Si -.0390 . 00038 . 0795 -.0795
R'2 -.0413 -.0206 -.0847
Tz .00388 . 00194 -.00774 . 00774
S» . 0,760 . 00180 -.00720
R3 .0,978 .0,497 -,03199

TZ — ,06190 -.0,97
S5 .0,984 -. 0,23

Since for any values of w, and w2 we have

| \w\ — \w\ I = J I M>1 — u>2 I I Wi + W2 I < I I wt — w2 I max (| |, | w2 |),
we conclude, referring to (10) and (11), that for any two points P, Q

| FiP) - F{Q) | < | ||F - Q || max (|| P ||, || Q ||).
Similarly, we find

| G(P) - G(Q) | < | ||P - Q || max (||P ||, || Q ||),
and

| H(P) - H{Q) | < | |1 P - Q || max (|| P ||, || Q ||).
Comparing these statements with (12), we see that the requirement (19) becomes

max (|| R, ||, || (S, ||, || Tl ||) < J; ,

or, if x, y are the coordinates of any one of the three points Rx , St , T, ,

max (| 2x |, | 4y |, | 2x - iy |) <

Substituting from (40) into (15), we can place limits on the directions of the lines
RiSi , RiTi , and (S1711 , corresponding to (20); for example, we find that the bounds
on the slope of SiTj are —1/20 and 1/21.

It is apparent that the bounds suggested by the theorem proved earlier are much
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Fig. 1

too conservative in this case. However, the result does show that the process will con-
tinue to converge once the solution has been closely approximated, and indicates the
character of the sequence of iterates.

6. Concluding remarks. The foregoing example indicates that convergence may
take place in practice under much less stringent conditions than were postulated in
the statement of the theorem. Apart from the possibility of a more refined analysis,
one must recall that in the course of the proof we necessarily assumed that each quantity
appearing took on its most unfavorable value at each step, which would be highly
improbable in an actual example. On the other hand, it appears that some conditions
of the type imposed are necessary for convergence to the desired solution. For if the
location of the initial points were uncontrolled, the iterative process might converge
to another solution of the system, while their orientation must be restricted to keep
the denominators in (2) away from zero.
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Fig. 2
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Fig. 3
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The iterative process may clearly be generalized to apply to systems of n equations;
presumably the same is true of the convergence properties. Moreover, we may note
that the foregoing discussion is applicable to the finding of complex as well as real
solutions.

As remarked in Sec. 2, the method of solution discussed in this paper is only one
of a variety of two-point procedures that may be constructed. Some of these have been
tested successfully on examples, but no sufficient conditions for convergence have been
established.
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