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SOME VARIATIONAL PRINCIPLES FOR PROBLEMS IN
HYDRODYNAMIC AND HYDROMAGNETIC STABILITY1

BY

R. C. DiPrima
Department of Mathematics, Rensselaer Polytechnic Institute

1. Introduction. A number of problems in hydrodynamic and hydromagnetic
stability give rise to characteristic value problems with differential equations of high
order but with constant coefficients. Examples are the sixth order problem that arises
in the stability of a viscous flow between concentric cylinders rotating in the same
direction when the gap between the cylinders is small compared to the mean radius
[1]; the eighth order problem that arises for the same geometry but with an electrically
conducting fluid and an axial magnetic field [2]; and the sixth order problem that arises
in the inhibition of convection by a magnetic field [3, 4]. (See [1] and the references cited
there for a more complete list of such problems.)

Since the differential equations have constant coefficients the characteristic value
problems can, in theory, be solved exactly by standard methods. However in practice
such methods are often laborious and unwieldy. In several cases the characteristic
value problem can be formulated as a rather unusual variational problem depending
upon two functions which are related by a lower order differential equation. A variational
principle of this type was apparently first suggested by Pellew and Southwell [5] in their
treatment of the classical Bernard problem—the instability of a layer of fluid heated
from below. More recently Chandrasekhar has used this method to treat several stability
problems including those mentioned earlier [1, 2, 3, 4], Although very satisfactory
results have been obtained from variational principles of this type the computations can
become somewhat tedious since it is necessary to integrate a differential equation as
part of the solution. Further, the variational principles are used in such a manner that
an exact solution of the characteristic value problem requires the evaluation of a de-
terminate of infinite order. Thus only approximate (though certainly satisfactory)
answers are available in practice.

In this paper it is shown how these characteristic value problems can be formulated
as variational problems which can be solved exactly without the necessity of integrating
any differential equation. The method of solution depends primarily upon the expansion
of the unknown functions in the variational principles in complete sets of appropriate
orthogonal functions. It is also shown how these methods can be extended to a non-self
adjoint boundary value problem by using a variational principle dependent upon both
the original problem and the adjoint boundary value problem. And in Sec. 5 a method
of solving the characteristic value problem by a direct series substitution in the differ-
ential equation is illustrated.

2. The Taylor problem. The problem of the stability of a viscous fluid between
two infinitely long concentric rotating cylinders was first successfully investigated both

1 Received Feb. 25, 1960. This work was sponsored by the Office of Naval Research under Contracts
Nonr-591(08) and Nonr-591(12).
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theoretically and experimentally by G. I. Taylor [6]. In the case that the gap between
the cylinders is small compared to a mean radius, and the cylinders are rotating in the
same direction, the stability problem reduces to the determination of the minimum real
positive value of T for all real positive a for which the following boundary value problem
has a solution:

(D2 - a2)3v = -a2Tv, -b < x < §, (1)

v — (D2 — a2)v = D{D2 — a2)v = 0 at x — ±£. (2)

Here D denotes d/dx, a is a dimensionless wave number, and T is a dimensionless number
(called the Taylor number) which depends upon the geometry and the angular velocities
of the cylinders. (Set a = 0 in Eq. 10 of [7] to obtain Eq. (1). See also [1]). The boundary
value problem defined by Eqs. (1) and (2) has been solved by Pellew and Southwell
[5] who found that the critical Taylor number, Tc , was 1707.8 at ac ~ 3.13.

This boundary value problem is not self-adjoint* and hence can not be expected to
be represented by a variational principle in the usual manner. However if we let Z = Tin
and iaZn = (D2 — a2)v then Eqs. (1) and (2) become

(D2 — a~fu — iaZv, (D2 — a)v = iciZu (3)

and

u = Du — v = 0 at x = ±|. (4)

Now the boundary value problem defined by Eqs. (3) and (4) is equivalent to the follow-
ing variational problem: Let

/1/2 n 1/2{[(D2 — a~)u]2 — (Dv)2 — a2v2) dx — iaZ / uvdx. (5)
-1/2 J-1/2

Then among all functions u and v which are continuous and have continuous derivatives
of the fourth order and second order respectively, and satisfy the boundary conditions
(4) that pair which makes I stationary necessarily satisfies the differential equations
(3). To prove this statement we note that the variation in I due to a variation S u in
u and 8v in v is

/1/2 {(D2 — a2)u{D2 — a) Su — iaZv 8u} dx
-1/2

1/2

\Dv D bv + av ov + iaZu to} dx.
■1/2

If SI is to vanish for arbitrary variations 5u and Sv that satisfy the boundary conditions
(4) it follows immediately after integration by parts that u and v satisfy the differential
equations (3).

To solve this variational problem we first note that from the form of the functional
I and the boundary conditions (4) that the solution can be split into even and odd func-

*Briefly, the boundary value problem L(u) = 0 on xi < x < x2, where L is a differential operator,
is said to be self-adjoint if for any two functions u and v satisfying the specified boundary conditions
at xi and x2 the integral from Xi to xt of vL(u) — uL(v) vanishes. See [8, p. 59] or [9, pp. 42-44] for a
more detailed discussion of self-adjoint boundary value problems.
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tions about x = 0. For the even solution we expand u and v in a complete set of even
orthogonal functions on — 1/2 < x < 1/2. Appropriate series are

00 CO

u(x) = v(x) = J2b„En(x), (6)
n-1 n-1

where En(x) = 21/2 cos (2n — l)x.r. Notice that the boundary conditions u = v = 0 at
x = ±1/2 are automatically satisfied by these series. The boundary conditions Du = 0
at x = ± 1/2 introduce the constraining condition

r = Z (-l)"+1(2n - l)o. = 0 (7)
n— 1

on the an. Substituting* the series for u and v in the expression for I gives

I = E \KAlal - AX) - iaZaX], (8)
M-l

where An = (2n — 1 )V2 + a2. The a„ and bn are determined by requiring that the
variation of I with respect to the on and bn vanish subject to the constraint T = 0. The
constraining condition is introduced by the use of a Lagrange multiplier. Thus we set
the partial derivatives of I — /ur with respect to a„ and bn = 0. Here m is a Lagrange
multiplier. This gives two simultaneous linear non-homogeneous equations for an and bn.
Solving for a„ and substituting in the condition T = 0 gives the following transcendental
equation for T as a function of a

(2n - I)2An
Al - a2T 0. (9)

Although the series in Eq. (9) only converges like (2n — 1)~2, the convergence can be
improved quite easily by making use of the fact that the sum of the squares of the
reciprocals of the odd integers is ir~/8. This gives

2

and the convergence of this series is like (2n — 1)~4. For a given value of a the roots of
Eq. (10) can be conveniently found by trial and error. The smallest positive value of T
is 1708.1 and occurs for a ~ 3.12. The solution for u and v odd can be carried through
in exactly the same manner. For this case an appropriate set of expansion functions
would be F„{x) — 21/2 sin 2nirx.

It is perhaps worth mentioning that if the Taylor problem is written in the form of
Eqs. (3) and (4) rather than the original form of Eqs. (1) and (2), approximate solutions
can be obtained conveniently by the Galerkin method. This method consists of ex-
panding u and v in sets of complete functions (preferably orthogonal) that satisfy the
boundary conditions and then requiring the error in the equations for u and v to be
orthogonal to the expansion functions for u and v. (For a more detailed discussion of the
Galerkin method, see Chap. 4 of [10]). For the Taylor problem appropriate functions
are the E„(x), mentioned earlier, for v(x) and the set of orthonormal even functions,

*It is permissible to differentiate these series termwise. This will be discussed in Sec. 4.
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C„(x)*, satisfying C„ and DCn = 0 at x = =t § recently tabulated by Harris and Reid
[11] for u{x). In particular if one term in each series is used we obtain the approximate
result Tc = 1728 at a = 3.12. This result can be improved by taking more terms in the
series; however M terms in each of the series for u and v will lead to a determinantal
equation of order 2M for T as a function of a, and the exact solution will require the
evaluation of determinant of infinite order. It might also be mentioned that the higher
characteristic values can be computed easily from Eq. (10). In contrast in the Galerkin
method, the number of terms required in the approximating series increases as the
successive characteristic values are computed.

Thus for the Taylor problem it would appear to be preferable to use the methods
suggested earlier rather than to use series that satisfy the boundary conditions term-
wise. In Sec. 5 the use of essentially the Galerkin method to solve exactly the Taylor
problem as given by Eqs. (1) and (2) by using series which do not satisfy the boundary
conditions termwise will be discussed. In many problems, however, the methods of
this paper are not applicable. In particular, this is true for a differential equation with
variable coefficients and in these cases the Galerkin method may be very appropriate.
This depends primarily upon the availability of functions satisfying the necessary
boundary conditions and how closely such functions can be expected to approximate
the characteristic functions of the problem. (See [12] for a discussion of a particular
problem).

3. The inhibition of convection by a magnetic field. The differential equation
governing the instability of a layer of an electrically conducting fluid heated from below
in the presence of an external magnetic field parallel to the gravitational field is

(D2 - a2){{D2 - a2)2 - Q D2\W = -a2RW, -\ < x < h, (11)

where D = d/dx, a is a dimensionless wave number, Q is a measure of the magnetic
field strength, and R, called the Rayleigh number, depends upon the temperature
gradient. The boundary conditions are

W = 0, {(£2 - a2)2 - Q D2\W = 0 ' (12)

at x — ± J and

DW = 0 or D2W = 0 (13)

at a rigid or a free surface respectively. (See [3] for a derivation of this boundary value
problem). The physical problem requires for a given value of Q (real and positive) the
determination of the minimum real positive value of R for all real positive a for which
this boundary value problem has a solution.

The methods of Sec. 2 are applicable to this problem. First let Z2 = R, and define
U(x) by iaZU(x) = {(D2 - a2)2 - QD2)W, then Eq. (11) becomes

{(Z)2 - a2)2 - Q D2}W = iaZU, (

(D2 - a )U = iaZW.

*The functions C„(x) are of the form (cosh Xmx)/(cosh jA,„) — (cos Xmz)/(cos jXm), where the A„
are the positive roots of tanh + tan = 0.
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The boundary conditions are

W = U = 0 (15)
at x = ± f and

1. Two rigid surfaces:

(16a)

2. Two free surfaces:

D2[V = 0 at x = ±i (16b)

3. One rigid surface and one free surface:

DW = 0 at .r = 5, D2W = 0 at x = — (16c)

For the variational problem the appropriate functional is

/1/2 {[(D2 - a*)W}' + Q{DW)2 - (DU)2 - a2U2} dx
-1/2

- iaZ [
J-1/2

WU dx.
(17)

For Case 1 it can be shown, as was done in Sec. 2, that a necessary condition for the
vanishing of the first variation in /((/, IF) subject to arbitrary variations in U and IF
that satisfy the boundary conditions (15) and (16a) is that U and IF satisfy the differ-
ential equations (14). This problem is precisely the same as the Taylor problem except
for the term Q(DW)2 in the definition of I. The appearance of this term does not cause
any complications and hence this case will not be discussed further.

For Case 2 the statement of the variational problem is slightly different. The boundary
conditions D2IV = 0 at x = ± £ are natural boundary conditions. That is, among all
functions V and W satisfying the boundary conditions (15) that set which makes I
stationary will necessarily satisfy the differential equations (14) and the boundary
conditions D2W = 0 at x = ± This follows immediately upon noting that

81 = f' 2 {(Z)2 - a)W(D2 - a2) hW + Q DW D 5TF - DU D bU - aU 8U
J-1/2

- iaZ(W 8U + U bW)) dx

= [D2IF D bW]lZ* + f ' {(D2 - a2)2IF - Q D2W - iaZU} bW dx
J-1/2

+ I*' {(D2 - a2)U - iaZW} bU dx
J-1/2

after integration by parts and the use of the boundary conditions. The vanishing of bl
for bU and bW arbitrary in — 5 < x < J and DbW arbitrary at x = ± | gives the desired
result. The computations are particularly simple for this case and will not be discussed.
Indeed, for a solution that is even about x = 0, one can choose IF = a„ cos (2n — l)irx,
U = b„ cos (2n — 1)71-2. The boundary conditions are then satisfied and the relationship
between R, a, and Q is found by substituting in the differential equations and setting
the determinant of the coefficients of an and bn equal to zero.
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For Case 3 the variational principle is the same as in Case 2 except that the con-
dition DW = 0 at x = | must be satisfied by the variation in W; the boundary con-
dition D2W = 0 at x = — ^ is still a natural boundary condition. Because of the boundary
conditions the solution for this case can not be split into even and odd solutions. Conse-
quently we write

W(x) = ± |anEn(x) + cnFn{x)\, U{x) = £ \bnEn(x) + dnFn(x)\, (18)
1 ««• 1

where En(x) = 2l/2 cos (2n — l)irx and F„(x) = 21/2 sin 2nirx. The boundary conditions
W = U — 0atx = ±5 are automatically satisfied by this choice of expansion functions.
The boundary condition DW = 0 at x = \ introduces the constraint

r2 = £ (-l)"+,{(2n - Da. - 2ncn] = 0. (19)
n »1

Substituting the series for W and U in the expression for I and carrying out the necessary
integrations gives 7 as a function of the an , bn , c„ and dn . The vanishing of the first
variation in I subject to the constraint (19) requires the vanishing of the partial deriv-
atives^ I — n2T2 with respect to the an ,bn, c„ and dn. Here /x2 is a Lagrange multiplier.
This leads to four simultaneous linear non-homogeneous equations for an , bn , c„ , dn
which can be solved quite easily. Substituting for the an and c„ in the condition r2 = 0
gives the following transcendental equation for R as a function of a and Q

oo 2/ 2 2 i 2\^ n(nT + a)   = 0. (20)
{(n ir + a ) + nVQ}(nV + a2) - a2R

Although this series only converges like n~ its convergence can be improved by adding
and subtracting 7r2/6 = n~2.

Numerical computations were carried out for two cases. In the case Q = 0 ten terms
of the series were used to compute Rc = 1100.6 at a ~ 2.86. This case was also solved
by standard techniques by Pellew and Southwell [5] who found Rc = 1100.65. For
Q = 50, a = 3.45 fourteen terms in the series were used to determine R = 2217.4. It is
estimated the error is less than .5%. For this case Chandrasekhar [3] gives an upper-
bound of 2217.6 for R*.

4. The Taylor problem with an axial magnetic field. Consider the Taylor problem
discussed in Sec. 2 with the additional complicating feature that the fluid is an electrical
conductor and there is an axial magnetic field. In this case, the stability problem requires
the solution of

{(D2 - a2)2 + Qa J2v = -Ta\D2 - a)v, <z < % (21)

with the boundary conditions

Dv = (D2 - a)v = 0, ) (22)

{(D2 - a2)2 + Qa2}v = 0, D{(D2 - a2)2 + Qa2}v = 0J

at z = ± |. Here Q is a measure of the magnetic field strength, D — d/dz and a and T

*In Table 3 of [3] the values of Q should be divided by four and the values of a should be divided
by two as pointed out by Chandrasekhar on p. 1187 of [4],
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have the same meaning as in Sec. 2. (See [2] for a derivation of Eqs. (21) and (22).)
Again, for an assigned value of Q, we are interested in determining the minimum positive
real value of T as a function of a (positive) for which this boundary value problem has a
solution.

To formulate this problem as a variational problem, we again split the differential
equation into two lower order equations. Also in this case it is convenient, though
not necessary, to change the interval of integration. If we let x = t(z + 5), 6 = a/ir,
P = Q/n, Z2 = T/tt4 and ibZu = {(D2 — b2)2 + Pb2}v, where D now denotes d/dx,
Eqs. (21) and (22) may be written as

{(D2 - by + Pb2\u = ibZ(D2 - b2)v 1 (23)

{(D2 - b2)2 + Pb2}v = ibZu, 0 < X < xf

and

u = Du — Dv = (D2 — b2)v = 0 (24)

at x = 0 and x. In contrast to the problems treated in Sees. 2 and 3 the above boundary
value problem, even after this splitting, is not self-adjoint and hence does not have a
variational principle of the type derived previously.

In order to use the methods of the calculus of variations, it is necessary to introduce
the adjoint boundary value problem. To do this, we write Eqs. (23) as L(u) where u is
the vector (u, v) and L is the matrix differential operator defined by Eqs. (23). We then
form the integral of UL(u) from 0 to x where U = (U, V). With the use of integrations
by parts this integral is then written as an integral from 0 to x of uLx(U). The adjoint
differential equations are (U) = 0. The boundary conditions are determined by requir-
ing that the terms resulting from the integrations by parts vanish. (See p. 149 of [9]).
For this particular problem the adjoint problem is

(25)
{(Z>2 - b2f + Pb2}U = ibZV

{(D2 - b2)2 + Pb2\ V = ibZ(D2 - b2)U, 0 < x < ir\

and

U = DU = V = D(D2 - b2) V = 0 (26)

at x — 0 and x. Notice that if U and V are associated with u and v the boundary con-
ditions on V are different and also the role of the operator (D2 — b2) is reversed.

The original boundary value problem and the adjoint boundary value problem
have the following variational principle. Let

I(u, v, U, V) = £ {M(u)M(U) + M(v)M(V) + Pb2(uU + vV) (2?)
+ ibZ(Dv DU + b2vU - uV)} dx,

where M(u) is (D2 — b2)u. Among all functions u, v, U, and V that are continuous and
have continuous derivatives through the fourth order and satisfy the boundary con-
ditions.

u = Du = Dv = 0, U = DU = V = 0 (28)
at x = 0 and x that set which make the first variation in I vanish necessarily satisfy
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the differential equations (23) and (25) and the natural boundary conditions
(D2 — b2)v = 0 and D(D2 — b2)V = 0 at the end points. The proof of this variational
principle is straightforward and will not be given.

The solution of this variational problem can be split into non-combining even and
odd (about 7r/2) solutions. For the even solution appropriate orthogonal series are

u = a0 + S a» cos nx> U=b0+j:bn cos nx,}

v = c0 + ^2 c„ cos nx, V = d0 + ^ cos nx J

where ^ stands for summation over the even integers. Although the series for u, v, and
U can be differentiated termwise twice, this is not true for the series for V. To see this
we note that since V is even, DV is odd and D2 V is even; hence appropriate series for
these functions are DV = ^2, d'„ sin nx, and D2V = d'a' + ^ d" cos nx. To determine
the relationship between the dn, d'n and d" we integrate by parts the following expressions
for d'n and d"

2 cT 2 2 C"d'n = - / DV sin nx dx = - \ V sin nx\l n V cos nx dx (30a)
7T J q IT 7T J o

= — n dn, n = 2, 4, 6 • • • .

d'B' = I f D2V dx = - [Z)7]0T = i/S (30b)
7T Jo

and

say, and

2 rr 2 2 rT
d" = - / D2F cosra dx — - [DV cosnzlo H—n DV sin nx dx /on

t Jo 7r i Jo (,oUC)

= $ + n d'n = [i — n2 dn , n — 2, 4, 6 • • • .

Similar computations show that the series for m, y, and U may be differentiated term-
wise twice. The idea of expanding a function and its derivatives in series of complete
functions and then integrating backwards to obtain the relationship between coefficients
is not new. For instance it was used by S. Goldstein in 1936 [13].

Once appropriate orthogonal series for u, v, U and V and their derivatives have
been obtained the solution of the variational problem, while slightly more complicated
than in the previous cases, is straight forward and hence will only be briefly described.
The boundary conditions Du = Dv = DU = 0atx = 0 and ir are automatically satis-
fied by the choice of the expansion functions. The boundary conditions u = U = V = 0
at x = 0 and ir introduce the constraining conditions.

r3 = a0 + Z «. = 0, r4 = bo + E bn = 0, r5 = do+ Z 4. = o. (31)

Substituting the series for u, v, U and V in the expression for I and making use of relation-
ships between d'n , d" and d„ gives I as a function of the an, bn , cn, d„ and /3. The vanish-
ing of the first variation in I subject to the constraining conditions (31) requires that the
partial derivatives of I — n3r3 — HiT4 — n5T5 with respect to the a„, bn , c„, d„ be zero.
Here n3 , m , and us are Lagrange multipliers. This gives four simultaneous linear non-
homogeneous equations for the an , bn , c„ , dn which can be solved to give these co-
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efficients as linear functions of fi3, n*, Ms and /S. The fact that we do not obtain infinitely-
many equations is a result of using series with the appropriate orthogonality properties.
Substituting for the an ,bn , and d„ in the constraining conditions (31) and the additional
necessary condition for the vanishing of 51, d(I — ̂ 3r3 — ti4T4 — nbT6)/d^ = 0, gives
four simultaneous linear homogeneous equations for M3 , in , Ms and /3. The vanishing of
the determinant of the coefficients gives a four by four determinantal equation for Z
as a function of b and P. This determinant reduces immediately to a two by two determi-
nant which can be written as

where

X,X2 - b2Z2Xs = 0, (32)

y b\b2 + P) ^Bl + Pb2
1 Ao + ^ An ' 3 A0 A„ '

y b\b2+P) , „ y, BM + Pb2)
X2 ~ Ao ~ + 2 ^ An

and Bn = n2 + b2, A0 = b4 {(b2 + P)2 - Z2}, A„ = (B'n + Pb2)2 - b2Z2Bn . Although
the series in X2 only converges like ri~2 its convergence can be improved by adding and
subtracting 7r2/24 = ^2 n~2■ Now all the series converge like ri~* where summation is
over the even integers, hence only a few terms are needed to evaluate these
series accurately.

In the case P — 0 it can be shown that this result reduces to the solution of the
Taylor problem discussed in Sec. 2. Of course in this case these series are not as convenient
as those used in Sec. 2. For the case Q = 100, a — 3.35 a sample computation was carried
out using six terms in the series. The smallest positive root was found to be
T = 1.759 X 104. It is estimated this result is correct to less than 1 %. Chandrasekhar
[3] gives T = 1.757 X 104 for this case.

5. Direct series solution. Although we have used variational techniques to solve
the problems discussed in the previous sections, this is not necessary. Indeed in some
cases it may be more convenient to use the direct method illustrated below for the
Taylor problem that was discussed in Sec. 2.

First introduce the new variables z — t (x + §), b = a/71-, and Z2 = T/tt* so that
the boundary value problem defined by Eqs. (1) and (2) becomes

(.D2 - b2fv = -b2Z2v, 0 < z < x (33)

v — (D2 — b2)v = D(D2 — b2)v = 0 at 2 = 0 and 7r, (34)

where D now stands for d/dz. For the even solution (about z = 7r/2) of Eqs. (33) and (34),
we expand v and its derivatives in the following series.

v = ^2 a„ sin nz D4v — ^2 en sin nz

Dv = bn cos nz Dsv = /« cos ^

D2v = X) c" sin nz D% = ^2 g„ sin nz

D3v = ^2 dn cos nz

where J2 now stands for a summation over the odd integers. This notation will be used
throughout this section. Substituting these series in the differential equation (33),
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multiplying by sin mz, m = 1, 3, 5, • • • and integrating from 0 to w gives

<7„ - 3b\ + 3b4cn - bean = -62Z2a„ , n = 1, 3, 5 • • • . (35)

This is similar to the Galerkin method in that the error in the differential equation is
required to be orthogonal to the expansion functions; however it should be noted that
the series used here do not satisfy the boundary conditions termwise. Indeed although
the first two boundary conditions are automatically satisfied the boundary condition
D(D2 — b2)v = 0 at z = 0 and tr requires

£ (d„ - nX) = 0. (36)

The relationships between the coefficients in the series for v and its derivatives are
found by integrating backwards as was done in the previous section. Thus, bn = na„ ,
Cn = — n2a„ , dn = — n3a„ , e„ = + n*a„ , and

jn = ~ [ D*v cos nz dz = - \ [D4v cos nz\l + n [ D4v sin nz dz\ — — - D4v(0) +
T Jo V •'O J T

nen

or f„ = y + ne„ = y + n5a„ say, and gn = — ny — n6a„ . In deriving these relationships,
use has been made of the boundary conditions that v satisfies. Substituting for gn , e„ ,
and c„ in Eq. (35) and solving for an gives a„ = — ny/{(n2 + b2)3 — b2Z2\. Also Eq.
(36), expressed in terms of the a„ is, ^ ^(n2 + b2)an = 0. Substituting for the an gives
the following transcendental equation for Z as a function of b,

+ -V + ^ = 0. (37)
„frta (n + b ) - b2Z2

This equation is identical with Eq. (9) derived in Sec. 1 using a variational procedure.
It should be noted that a„ ~ n~5 and hence the solution of the characteristic value

problem can be differentiated termwise four times. This result is in contrast to the
remark made by Jeffreys that the trigonometric series obtained by differentiating more
than twice are divergent [18]. Further a simple computation shows that /„ ~ n~2 and
hence the series for D5v and D6v are convergent.

6. Remarks. In the previous sections, general methods for solving exactly constant
coefficient characteristic values problems have been illustrated. The methods depend
primarily on the expansion of the unknown function and its derivatives in sets of appropri-
ate orthogonal functions. It is not clear that a general conclusion can be drawn about
the advantages or disadvantages of the variational method as used in Sees. 2, 3, and 4
compared to the direct method illustrated in Sec. 5. However it should be mentioned
that if the direct method is used it is necessary to enforce all the boundary conditions
even if some of these boundary conditions are natural boundary conditions for the
variational problem.

A partial list of other hydrodynamic and hydromagnetic stability characteristic
value problems that can be treated easily and exactly by the methods outlined above are
the inhibition of convection by a magnetic field for a layer of fluid heated from below
when the magnetic field is not parallel to the gravitational field [4], the stability of a
viscous flow between two concentric cylinders rotating in the same direction in the
presence of a circular magnetic field when the gap between the cylinders is small [14],
and the stability of liquid helium II between concentric rotating cylinders in the case
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that the cylinders are rotating in the same direction and the gap between the cylinders
is small [15, 16].

These methods have also been used to treat problems in the vibrations of beams and
several two dimensional problems in elasticity. In particular, the reader is referred to
references [17] and [19].
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