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The resultant force vectors on faces BCD and ACD act at the centroids H and G of
these faces and therefore contribute nothing to the sum of moments about axis GH.
Denoting the mid-point of GH by Q, decompose the stress vector S] acting at E into
three components that are acting along QE, parallel to QH, and normal to the plane
EGH (i.e., parallel to n2), respectively. Of these only the last component, which has
the value Sj n2 , produces a moment about axis GH. Similarly, only the component
of S2 , acting at F, in the direction of n, , produces a moment about axis GH. The re-
sultant moment is given by

(Sj -n2)A(EQ) - (S.-n,) A(FQ) = 0.
In the above equation A is the common area of triangles ABC and ABD. Since the
moment arms EQ and FQ are equal by construction, it follows that

Si '112 = S2 'flj •

UNSTEADY MOTION OF AN INFINITE LIQUID DUE TO
THE UNIFORM ROTATION OF A SPHERE, r = a*

by C. D. GHILDYAL (Lucknow University)

Introduction. The problem of steady motion of a viscous liquid due to the slow
rotation of a sphere has already been discussed by various workers in the field of hydro-
dynamics [1]. Here we propose to discuss the unsteady flow of a liquid initially at rest
due to the uniform rotation, fi, of a sphere about the axis of z, under an external force
zu2 acting per unit mass of the liquid along the axis of rotation and the pressure at any
point of the liquid is given by

P — J Pr& dr + a constant, (A)

where w = u(r, t), r2 = x2 + y2 + z2, and velocity components at any point (x, y, z)
of the liquid are assumed to be u = — uy, v = ux and w = 0.

The result obtained is valid also for slow rotation of the sphere. In that case the
external force does not exist and the pressure remains constant throughout the liquid.

The equations of motion of a viscous homogeneous incompressible liquid in this
case reduce to

dpi
Jt

(d'" 1 4 doA
~ "Adr2 + r dr) '

(B)
dp 2

— pros .dr

A general solution of (B) is obtained by the method of Laplace transform under the
boundary conditions

(i) a>(a, t) =

(ii) co(r, 0) - 0, (C)
(iii) lim <o(r, t) = 0.

*Received August 26, 1959; revised manuscript received January 20, 1960.
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1. Solution. Putting vt = T and «(r, T) = W(r, T)/r3/2, in (B) and (C), we get

dW d2W 1 dW 9 W .
dT dr2 + r dr 4r2 ■ U}

and
(i) W(o, T) = a3/2«,

(ii) W(r, 0) = 0, (1.2)
(iii) lim W(r, T) = 0.

r—»a>

Now we define the Laplace transform of W{r, T) as

Thus Eq. (1.1) becomes

d2W* , 1 dW*

W*(r, s) = f" W(r, T)e"T dT.
Jo

(s + ^)w* = 0, 2- + -  
dr r dr

the solution of which is

W*(r, s) = cl3/2(rsu2) + DK3/2(rs1/2),

where I3/2 and K3/2 are modified Bessel functions of the order 3/2.
The boundary conditions now give

c = 0 and D = a3/2 Q/sK3/2(asU2).

Therefore,

W*(r, s) = a3/2UK3/2(rs1/2)/sK3/2(asW2).

From Laplace inversion formula
3/2n + |1/2\-«r

- '"«('■ ^- -sr ^
For the order (n + 1/2), where n is an integer, the Bessel functions and modified

Bessel functions both reduce to finite form. Thus we get

-w*.

where 7, and I2 are the inverse Laplace transforms of

s"1 exp [(a — r)s,/s] and s_1/2(a_1 + s,/2)~l exp [(a — r)s1/2]

A reference to the Tables of integral transforms, edited by Erd61yi and associates [2] gives

7, = 1 - erf (y=rr) and I2 = [l - erf + ^-)] exp + |) ,
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where

2 f"erf (it) = -tt2 / exp (—a;2) da:, and r > a.
JO

We thus have,

<*>. T) - ^ {(j - l)[l - erf (|=r? + ^)] exp + |)

+ 1 - erf (|yT7#)} (1.3)

The value of co(r, T) is given by the expression (1.3) and satisfies the equations of
motion as well as the boundary conditions. The transient part in (1.3), say K, can be
written as

Yf 2a\r - a)n J, JV - a , (2D,/,_|\ (T , r
K-r' \I-PLw7!+ a J/expb + ;- V

where P(x) is the probability integral

i rP(x) = ^ 1/2 J_ exp (-K) du.

For large values of r, i? <= l/r3. As r —> , jST approaches the value zero quite rapidly.
K also approaches zero as T —* .

Now let a be the unit of length and 2T = 1. Equation (1.4) then reduces to

K = § {2(r - 1)[1 - P(r)] exp (r - *) + 1 - 2P(r - 1)}.
r

The following table1 gives the values of K/9. for different values of r when 2T = 1.

Relation between r and K/Sl.

r K/a r K/a r K/Q r K/i2 r K/a

1.00 -0.0000 1.60 -0.0620 2.40 -0.0495 3.60 -0.0210 6.00 -0.0046
1.10 - 0.0227 1.70 -0.0628 2.60 -0.0437 3.80 -0.0180
1.20 - 0.0338 1.80 -0.0624 2.80 -0.0380 4.00 - 0.0154
1.30 - 0.0485 1.90 -0.0615 3.00 - 0.0324 4.50 -0.0109
1.40 - 0.0553 2.00 -0.0598 3.20 -0.0282 5.00 -0.0079
1.50 -0.0596 2.20 -0.0551 3.40 -0.0241 5.50 -0.0061

The table shows that unsteadiness spreads from the surface of the sphere into the
interior of the liquid and attains its maximum value for r = 1.70, approximately. There-
after it gradually decreases and becomes inappreciable at a finite distance from the

'The values of P(x) are taken from Biometrika tables for statisticians, vol. 1, ed. by E. S. Pearson
and H. O. Hartley, 1956, pp. 104-106.
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sphere. The region in the neighbourhood of r — 1.70 is consequently the region of maxi-
mum unsteadiness.
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DYNAMIC PROGRAMMING APPROACH TO OPTIMAL INVENTORY
PROCESSES WITH DELAY IN DELIVERY*

by RICHARD BELLMAN (The RAND Corporation, Santa Monica, California)

Summary. The usual dynamic programming approach to inventory processes with
delays in delivery leads to functions of many variables. This multi-dimensionality
prevents the straightforward utilization of digital computers.

Using a type of transformation previously applied in the study of engineering control
processes, we show that a class of inventory processes with time lags can be treated in
terms of sequences of functions of one variable, regardless of the length of the delay.

1. Introduction. The problem of determining ordering policies which minimize
the cost of operating supply depots and stockrooms is one which has attracted a great
deal of attention in industrial and military circles in recent years. An analytic approach
to these questions by way of functional equation techniques was inaugurated by Arrow,
Harris, and Marschak, in a now classic paper, [1], These investigations were extended by
Dvoretzky, Kiefer, and Wolfowitz, [7], and Bellman, Glicksberg, and Gross, [6]; see
also [2], and the books by Whitin, [8], and Arrow, Karlin and Scarf, [9].

Although this approach can be used to obtain analytic and computational solutions
of a variety of processes in which there is no delay between an order for an additional
supply of items and the delivery of these items, this method runs into dimensionality
difficulties when time lags of more than a stage or two occur. If there is a delay of d
stages in filling an order, the state of the system at any time is characterized not only
by the present stock level, but also by the quantities on order which will arrive one,
two, • • • , d stages in the future.

It thus appears that functions of d variables necessarily arise when point of regener-
ation methods are employed to treat these processes.

In several papers devoted to the study of control processes arising in the engineering
world [3], [4], -we have shown that in some fortunate situations certain preliminary trans-

*Received February 3, 1960.


