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—NOTES—

A SIMPLIFIED GEOMETRIC PROOF OF THE
RECIPROCAL STRESS THEOREM*

Br B. PAUL (Brown University)

The well-known reciprocal stress theorem [1, 2]1'2 states that the scalar product
of the stress vector on a given plane with the unit normal to a second plane equals the
scalar product of the stress vector on the second plane with the unit normal to the
first plane. Starting from this single theorem, which Biezeno and Grammel [1] call
"the essential core of all stress analysis" it is a simple matter to deduce the symmetry
of the stress tensor, to derive the equations of stress transformation, and to find many
other useful results.

Biezeno and Grammel prove the theorem geometrically by projecting the faces
of a stressed tetrahedron and their corresponding stress vectors orthogonally onto
an auxiliary plane. This is essentially a proof by a technique of descriptive geometry.
The importance of the theorem may perhaps justify the small amount of space required
here to present a simpler modified version of this proof which obviates the need for
projections onto an auxiliary plane.

For simplicity consider a homogeneous state of stress where Si and S2, respectively,
represent the stress vectors on planes Hi and n2 which are respectively normal to unit
vectors n, and n2 . Figure 1 shows two congruent triangles ABC and ABD constructed,
on the line of intersection of III and n2 . The four points ABCD enclose a tetrahedron.
Let E, F, G, H represent the centroids of the four faces as shown in Fig. 1. Then it
follows that the plane of EGH is parallel to n2 and the plane of FGH is parallel to II,.
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The resultant force vectors on faces BCD and ACD act at the centroids H and G of
these faces and therefore contribute nothing to the sum of moments about axis GH.
Denoting the mid-point of GH by Q, decompose the stress vector S] acting at E into
three components that are acting along QE, parallel to QH, and normal to the plane
EGH (i.e., parallel to n2), respectively. Of these only the last component, which has
the value Sj n2 , produces a moment about axis GH. Similarly, only the component
of S2 , acting at F, in the direction of n, , produces a moment about axis GH. The re-
sultant moment is given by

(Sj -n2)A(EQ) - (S.-n,) A(FQ) = 0.
In the above equation A is the common area of triangles ABC and ABD. Since the
moment arms EQ and FQ are equal by construction, it follows that

Si '112 = S2 'flj •

UNSTEADY MOTION OF AN INFINITE LIQUID DUE TO
THE UNIFORM ROTATION OF A SPHERE, r = a*

by C. D. GHILDYAL (Lucknow University)

Introduction. The problem of steady motion of a viscous liquid due to the slow
rotation of a sphere has already been discussed by various workers in the field of hydro-
dynamics [1]. Here we propose to discuss the unsteady flow of a liquid initially at rest
due to the uniform rotation, fi, of a sphere about the axis of z, under an external force
zu2 acting per unit mass of the liquid along the axis of rotation and the pressure at any
point of the liquid is given by

P — J Pr& dr + a constant, (A)

where w = u(r, t), r2 = x2 + y2 + z2, and velocity components at any point (x, y, z)
of the liquid are assumed to be u = — uy, v = ux and w = 0.

The result obtained is valid also for slow rotation of the sphere. In that case the
external force does not exist and the pressure remains constant throughout the liquid.

The equations of motion of a viscous homogeneous incompressible liquid in this
case reduce to
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A general solution of (B) is obtained by the method of Laplace transform under the
boundary conditions

(i) a>(a, t) =

(ii) co(r, 0) - 0, (C)
(iii) lim <o(r, t) = 0.
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