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AN ELEMENTARY DISCUSSION OF DEFINITIONS
OF STRESS RATE*

by WILLIAM PRAGER (Brown University)

1. Introduction. The simplest constitutive equation considered in the theory of
plasticity only involves the tensors of stress and rate of deformation and described
rigid, perfectly plastic behavior. When elastic effects are to be included in the analysis,
this equation is assumed to apply to the plastic part of the rate of deformation, to which
an elastic part must be added before the total rate of deformation is obtained. In a
similar manner, a simple constitutive equation for a viscoelastic material can be estab-
lished by adding an elastic rate of deformation to the rate of deformation of a viscous
fluid. In both cases the elastic rate of deformation is usually written as a function of an
appropriately defined rate of stress.

This stress rate must obviously satisfy the following condition: if a stressed con-
tinuum performs a rigid body motion and the stress field is independent of time when
referred to a coordinate system that participates in this motion, the stress rate vanishes
identically. As is readily seen, this restriction is not severe enough to lead to a unique
definition of stress rate. Indeed, from one definition that satisfies this condition another
one may be obtained by adding terms that contain the rate of deformation. In a rigid
body motion, these terms vanish, and the second definition reduces to the first. Since
the condition imposed on the definition of stress rate only concerns rigid body motions,
it will be satisfied by the second definition if it is satisfied by the first. As a consequence
of this freedom of choice, many definitions of stress rate are found in the literature.

A similarly embarrassing choice offers itself when one attempts to define finite strain.
Potentially, any tensor formed from the displacement gradients qualifies as strain
tensor if it vanishes identically for all rigid body motions. Depending on the field of

'Received Feb. 6, 1960. This paper is based on a report distributed under Contract Nonr 562(10)
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application, one or the other definition of strain may be more convenient to use. Whereas
the relative merits of the various definitions of strain are well understood, those of the
various definitions of stress rate have not been discussed in similar detail. Moreover,
some of these definitions are usually presented in a manner that presupposes familiarity
with general tensor calculus. In this paper, only Cartesian tensors are used; the principal
definitions of stress rate found in the literature are derived in an intuitive manner, and
their suitability for the mathematical description of elastic, plastic behavior is discussed.

2. Notations and basic relations. Let t denote the time and x{(i = 1, 2, 3) a fixed,
system of rectangular Cartesian coordinates, and denote partial differentiation with
respect to these independent variables by the operators d0 and 3, , respectively.

A tensor of the second order, T, can be written as the sum of its symmetric and
antisymmetric parts, which will be denoted as follows:

1\ai = a + Th), ^

Tun = — Tu).

If vi{x1 , x2 , x3 , t) is the time-dependent velocity field of a continuum, the rate of
deformation is defined as the symmetric part 3(fy;) of the tensor diV,- , and the rate of
rotation as its antisymmetric part d[ivn .

The acceleration of a typical particle is the material derivative v' of its velocity,
which is defined by

v' = d0Vi + Vj dpi , (2)

where the repeated subscript indicates summation in the usual manner. The material
derivative of the infinitesimal vector ds( joining adjacent particles is

(ds,)' = dfli dSj . (3)

Because it will suggest a possible definition of stress rate by analogy, we consider
the second rate of deformation. If ds{ and 5s,- are the infinitesimal vectors joining the
typical particle to two neighboring particles, it follows readily from (3) that the material
derivative of their scalar product is

(ds,- Ssi)' = 2 daVi) dst <5s, . (4)

Forming the material derivative of (4), we obtain, after some simplifications,

(ds, 5s,)" = 2[(d(,»,•))* + d,vk d^Vj) + djVk d{kvt)] ds{ 5s,- . (5)

Since the coefficient of 2ds,-5s,- in (4) is called the rate of deformation, the corresponding
coefficient in (5), i.e. the contents of the bracket, may well be called the second rate of
deformation. Higher rates of deformation have been discussed by Rivlin and Ericksen
[I]*-

The oriented surface element formed by the infinitesimal vectors ds{ and 5Sj is defined as

dAf = e,-,* ds,- 8sk , (6)

where eiik is the alternating tensor. It is readily verified by means of (3), that the material

♦Numbers in brackets refer to the Bibliography at the end of the paper.
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•derivative of this surface element can be written as

(dA,)' = d,Vj dAi — dtVj dAj (7)

{see, for instance, [2, p. 598]).
3. Jaumann's definition. If <rti(xj, x2, x3, t) denotes the time-dependent stress

field in the continuum, the material derivative

v'a — d0<Tit + vk dtcru (8)

indicates the time rate of change of a typical stress component at a particle of the con-
tinuum, the stress tensor being referred to the fixed coordinate system.

When the continuum and its stress field perform a rigid body motion other than a
mere translation, <r'u does not vanish identically. Accordingly, (8) is not acceptable as
a definition of the stress rate for use in constitutive equations. A suitable definition is
obtained as follows.

Let P, Qt , Q2 , Qi be neighboring particles such that the lines PQa (a = 1, 2, 3)
indicate a system of principal axes of the rate of deformation at the particle P and the
time t, and denote the positions of these particles at the time t + dt by P', Q[ , Q£ , Q'a .
As the shear rates for the principal axes of the rate of deformation vanish, the lines
P'Q!, are orthogonal. The stress rate could be so defined that it vanishes if the stress
tensor at P has the same components with respect to the axes PQa at the time t as the
stress tensor at P' has with respect to the axes P'Q 'a at the time t + dt.

Let X" be the unit vector of the direction PQa and X" + (X")®cft that of the direction
P'Q„ . Since the axes PQa have the rate of rotation d {ivn , we have

(X°)* = duVil\° . (9)

Now, a typical component of the stress tensor a-,-,- with respect to the axes PQa is given
by the expression <r,-;X"X? . According to (9), the material derivative of this expression is

(<r,-,X°X;)" = (o-'y + <Tki d (iUfcl + crik d [,P*))X"X; . (10)

If the material derivatives of all these stress components are to vanish, the parenthesis
in (10) must vanish. The expression in the parenthesis thus constitutes a suitable defi-
nition of stress rate. On account of the symmetry of the stress tensor and the anti-
symmetry of the rate of rotation tensor, this definition, which is due to Jaumann [3],
may be written as

<r'i = cr'i ~ <Tn d[kvn — <Tjk dikVil . (11)

Jaumann's work does not seem to be well known: the definition (11) is frequently used
in the recent literature [4] without reference to Jaumann.

Since Jaumann's stress rate a-',- measures the rate of change of the stress components
with respect to a rectangular Cartesian system that participates in the rotation of the
material, a'a — 0 implies that the invariants of the stress tensor are stationary.

4. The definition of Cotter and Rivlin. Let 1° (a = 1, 2, 3) be three linearly inde-
pendent vectors emanating from the typical particle P at the time t. During the time
interval (t, t + dt), the neighborhood of P undergoes the infinitesimal affine transfor-
mation specified by tensor d<r,-. If the vectors 1° are subjected to the same transformation,
we have, in analogy to (3),

(O* = djVil? . (12)
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When the continuum and its stress field perform a rigid body motion, the material
derivative

(ffijl'lf)' = (era + <rki d,vk -f uik d,vt)l°l? (13)

vanishes. In view of the symmetry of the stress tensor, this remark yields the following
definition of stress rate, which is due to Cotter and Rivlin [5]:

v'ij = <r'a + diVtffki + d,Vkaki . (14)

Note that the right-hand side of (14) has the same structure as the expression in the
bracket in (5) which can be written as

(d(,i>,))" = (d(f!;,>)' + diVk d^Vj) + djVt d^Vii . (15)

Cotter and Rivlin [5] have shown how higher rates of stress can be obtained by a
continuation of the procedure that led to (14). While the definition (14) lends itself
more readily to this generalization than the definition (11), it has the drawback that
cr'i'i = 0 does not imply stationary behavior of the stress invariants.

5. Oldroyd's definition. Let the stress tensor at the particle P and the time t be
written as a linear combination of the dyadic products of the vectors I" :

£Ta = Cafil'll . (16)
On account of (12), the coefficients ca$ of this combination will be stationary if

0*t, Saj3 dkVilklj **f" Safl dkVjl ilk (17)

= <Tki dkv{ + <rik dkVj

In view of the symmetry of the stress tensor, it follows from this remark that

a'i" = a'a — o-.t dkVj — <r,k dkv{ (18)

is an acceptable definition of stress rate.
This definition, which is due to Oldroyd [6], has the same disadvantage as that of

Cotter and Rivlin: the stress invariants need not be stationary if a'// vanishes.
6. Truesdell's definition. The infinitesimal force transmitted across the oriented

surface element dA( is
dPj — a a dAi . (19)

Let this force be written as a linear combination of the vectors I" :

dPj = dCJI. (20)
According to (12), the coefficients dCa of this combination will be stationary if

(dP,)' = dCa dkv,lak = dPk dkv,- . (21)

Substitution of (20) into (21) and use of (7) furnishes <r''"dAi = 0, where

a'i'i" = <r'ii + <Tu dkvk — (Tik dkVj — <rik dtV{ . (22)

As follows from its derivation, Eq. (22) represents an acceptable definition of stress rate.
This definition, which is due to Truesdell [2, p. 604], may seem more far-fetched

than the preceding ones, because it is based on the consideration of elementary forces
rather than stresses. It can be shown, however, that Truesdell's stress rate is closely
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related to the partial derivative of Kirchhoff's stress tensor with respect to time, the
other independent variables being the rectangular Cartesian coordinates of the particles
in some reference state (see [7], Chap. IX, Sec. 4). Note that the vanishing of Truesdell's
stress rate does not imply stationary behavior of the stress invariants.

7. Use in constitutive equations of plasticity. In the theory of perfectly plastic
solids, a state of stress is said to be at or below the yield limit according to whether a
certain function of the stress invariants, the yield junction, is zero or negative. States
of stress that furnish positive values of the yield function cannot be supported by these
solids.

The constitutive equations describing elastic, perfectly plastic behavior are generally
conceived as resulting from the superposition of the rates of deformation of an elastic
and a rigid, perfectly plastic constituent. To facilitate this superposition, the consti-
tutive equation of the first constituent is usually assumed to establish a one-to-one
correspondence between the rate of deformation and the stress rate. The second con-
stituent is supposed to be rigid under stresses below the yield limit, and to flow plastically
under stresses at the yield limit.

In the composite elastic, perfectly plastic solid two criteria are therefore used to
judge a given variation of stress in time: the stress rate in the elastic constituent, and
the rate of change of the yield function in the plastic constituent. To avoid contradictions,
the yield function should be stationary when the stress rate vanishes. A similar condition
arises in the theory of elastic, work-hardening solids, where a vanishing stress rate
should go with a stationary state of hardening. Only Jaumann's definition of stress
rate satisfies these conditions. For use in the constitutive equations of plasticity, Jau-
mann's definition is therefore preferable to the other definitions of stress rate discussed
in this paper.
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