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Abstract. Necessary and sufficient conditions for the physical readability of linear
phase shift networks are imposed upon the network transfer function. A technique is
presented for approximating non-physically realizable transfer functions with those
which are physically realizable. It is demonstrated that if the approximation is properly
limited, the unit impulse response can be made non-negative for all values of time.
These results are extended to networks whose transfer functions phase shift is the sum
of two terms, one which varies linearly with frequency and a second which varies in
discrete steps of ir radians.

Introduction. Investigations of the transient response of linear networks have led
to the conclusion that a network transfer function whose phase shift is a linear function
of frequency is often desirable. Of course, if such a network is to be built, it must be
physically realizable. Necessary and sufficient conditions for this physical realizability
have been obtained. The effect of these conditions on the transfer function can be readily
visualized.

If a desired transfer function is not physically realizable, then it should be approxi-
mated by a transfer function which is physically realizable. An approximation of this
type is presented, and it is shown that the accuracy of the approximation is improved as
the magnitude of the slope of the phase shift (the network time delay) is increased.
The unit impulse response of the approximating network can always be made a non-
negative function of time if the given transfer function is of finite bandwidth and the
approximation is properly limited.

The following definition will be used throughout the body of the paper. The ratio,
expressed as a complex function of frequency, of the steady state response of a network
to its sinusoidal input will be called the transfer function. It will be written as T(w)
exp [j0(<o)], where T(a>) is the amplitude function and 0(w) is the phase function. If
0(a>) = — ku, where k is a real positive constant and T(u) is a real positive function of
co, then this is the transfer function of a linear phase shift network. If T(co) takes on
negative as well as positive values, then this will be called the transfer function of a
stepped linear phase shift network. The term stepped is used since the negative values
of T(w) may be accounted for by adding discrete steps of ir radians to the phase function.
The expression, generalized linear phase shift network, will be applied to networks
which are either linear phase shift or stepped linear phase shift.

It shall be assumed that any amplitude functions considered here satisfy the Dirichlet
conditions and, hence, possess a Fourier transform.

The physical realizability of generalized linear phase shift networks. If an arbitrary
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transfer function is assigned to a network, it is often found that the response of the
network to a suddenly applied signal must appear before the signal is applied. Such a
network is not physically realizable. In fact, the definition for physical realizability
which shall be used in this paper is: A network is physically realizable if its response
to a signal, applied at time t = 0, is zero for all t < 0. Hence, using the convolution
integral, a necessary and sufficient condition for physical realizability is that the response
of a network to a unit impulse applied at time t — 0 is identically zero for all values of
time less than zero. In order to convert this condition into one which can be interpreted
physically, some properties of generalized linear phase shift networks will be discussed.

The unit impulse response W{t) of a generalized linear phase shift network can be
written as

W(t) = - f T(u) cos co(t -k)du. (1)
7T «/ o

It can be seen that W(t + k) is an even function of time. Hence, if a generalized linear
phase shift network is to be physically realizable, it is necessary and sufficient that

W{t + k) = 0 for t < —k and t > k. (2)

It is of interest to note that the unit step response of a physically realizable generalized
linear phase shift network is such that

|T(0), t > k

to, t < -k
A(t + k) =

From the Fourier inversion relation we obtain

T(co) = 2 f W(u + k) cos cow du, (3)
Jo

where u = t — k. Thus, we may state the following theorem:
Theorem 1. A necessary and sufficient condition that a generalized linear -phase shijt

network, whose transfer junction is T{u) exp (— jfcco), be physically realizable is that T(u)
be expressible by the following Fourier transform:

T(tS) = / H(u) cos com du. (4)
Jo

Proof. The necessary condition is proven by assuming that W{t) = 0 for t < 0 and
then applying Eq. (2) to Eq. (3) and then substituting II(u) = 2W{u + k). The suf-
ficiency condition is proven by hypothesizing Eq. (4), substituting H(u) = 2W(u + k)
and then comparing it with Eq. (3). Hence, W(u + k) = 0 for u > k, but W(u + fc)
is an even function of u. Therefore, W(t) =0 for t < 0.

For an interpretation of Theorem 1 we can make use of the sampling theorem of
Shannon [1]. From this theorem it can be seen that T'(co) is completely specified by a
set of points spaced ir/k radians apart. Hence, increasing the magnitude of the phase
slope, fc, increases the accuracy of the approximation, in the sense that the function
may be specified at more closely spaced points. It should be noted that the constant
k is also the delay time of the network. Thus, the maximum value of k may be limited
by the design constraints of the system.
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An approximation procedure. When an arbitrary generalized linear phase network
transfer function 7\(co) exp (— jku) is specified, often 7\(co) does not satisfy the con-
ditions imposed by Theorem 1. A technique is given here for approximating the given
transfer function with a physically realizable transfer function, T„(co) exp (— jku).
The form of the physically realizable approximate amplitude function, T„(co), will
depend upon the criterion of approximation used. In this case the Fourier criterion was
used. That is, if Ti(u) is of the form,

Ti(co) = / Hi(u) cos com du, (5)
Jo

where

Hi(u) = — f T,(u) cos com dw, (6)
T J 0

then Ta(ui) will be defined as

T.(«) = f //1 (w) cos mi du. (7)
Jo

An increase in k will, of course, increase the accuracy of the approximation. Note
that an increase in k will not just introduce a constant time delay in this case because
Ta(co) will also vary.

Approximation procedures which guarantee a non-negative unit impluse response.
It is often desirable for the unit impulse response of a network to be non-negative for all
values of time (a monotonically increasing unit step response). If a transfer function
of a linear phase shift network, 2\(co) exp (— jku), which does not have a non-negative
unit inpulse response, is specified, then often it is desirable to approximate Ti(co) with
a physically realizable approximate T«(co), such that the resulting network has the desired
non-negative unit impulse response. Procedures for obtaining such a Ta(u) will be
presented. Two of these require that T^{co) be bandwidth limited. That is 7\(co) = 0 if
co > coe , where co„ is some specified angular frequency. In many instances such low pass
characteristics are specified or closely approximate the specified characteristics.

In the following theorems it is assumed that the networks are generalized linear
phase shift with a phase slope of magnitude k.

Theorem 2. If Ta(co) is a physically realizable approximate of some 7\(co) where 7\(co) =
0 if w > uc , Ti(w) > 0 for 0 < co < ooc , and cock < nil then the unit impulse response
will be non-negative for all values of time.

Proof. From Eq. (6) we obtain

2 r"°
Hx(u) = - / Ti(co) cos com dw.

ir Jo

For the range of integration, Tx(co) > 0 and cos com > 0, since 0 < wm < uck < ir/2.
Hence, H^u) > 0 for all | u | < k; but (from the proof of Theorem 1) Wit) = Hit — fc)/2
for 0 < t < 2k and W(t) = 0 for t < 0 and t > 2k. Therefore Wit) >0 for all t.

Thus, if the magnitude of the phase slope is equal to or less than ir/ (2coe), the unit
impulse response will be non-negative. It may be desired to obtain a larger phase slope
magnitude, without altering the shape of the transient response (although time delay
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will be introduced). This may be accomplished by not increasing the upper limit of inte-
gration of Eq. (7) so that now Ta(co) is given by

« t/(2uc)/% T / (ZW c)

TM = / /7i (u) cos uu du.
Jo

If, in addition to the requirements imposed in Theorem 2, the specified amplitude
function Tt(u) is a monotonically decreasing function of time, then the restrictions on
k imposed in Theorem 2, can be relaxed somewhat.

Theorem 3. If Ta{co) is a physically realizable approximate of some T\(co) where Tx (co) =
0 if co > co„ , Ti(oj) > 0 /or 0 < oj < ojc , Tx (co) is a monotonically decreasing junction oj
oj, and uek < 7r //ien the impulse response will be non-negative jor all values of time.

Proof. The proof follows that of Theorem 2 except the fact that T,(co) is a mono-
tonically decreasing function of co allows cos cow to take some negative values, provided
COW < x.

Thus, a better approximation to can be obtained when Ti(ui) is a monotonically
decreasing function of w.

If the specified amplitude function T,(u) is such that

fJo
Tifw) cos am du > 0 for all 0 < u < ilf, (8)

then any physically realizable approximate of (co) will result in a non-negative unit
impulse response provided that k < M. An example of this is a 2\(o>) which decreases
steadily to zero as u approaches infinity and is convex downwards. The integral of
Eq. (8) will be positive for all values of u, (see Titchmarsh [2]) Thus, any positive value
of k may be used.

As far as the problem of actually realizing these networks is concerned, it can be
shown that these networks cannot be realized with a finite number of lumped linear
elements. However, Corrington and Sonnenfeldt [3] and Kallman [4] have developed
methods for realizing linear phase shift networks, using distributed elements. These
techniques can be applied to generalized linear phase shift networks.

Conclusion. The definition of linear phase shift networks has been generalized to
include networks with a transfer function T(co) exp ( — j'fcco), where T(w) is allowed to take
on negative as well as positive values. If the network is to be physically realizable, then
T(a) must be expressible by the following Fourier integral:

T(w) = / H(u) cos com du.
Jo

One means of interpreting this result is that T(co) can be specified at points which are
no closer than ir/k radians per second apart.

A technique is presented for approximating any arbitrarily specified amplitude
function T}(ui) by a physically realizable amplitude function T„(co) which is given by

where

Ta(co) = / Hi(v) cos ofu du,
J 0

2 rHAii) = - / co) cosecudu u < k.
7r Jo
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If Ti(co) > 0 and is bandwidth limited, so that 2\(w) = 0 if <o > , then the unit
impulse response of the approximating network will be positive for all values of time,
if k < 7r/(2«c). If, in addition to the requirements just imposed upon Ti(co), it is also
a monotonically decreasing function of w then the unit impulse response of the approxi-
mating network will be non-negative if k < ir/uc . Finally, it is shown that if

/ Ti(oi) cos uu du > 0 for all u < M,
Jo

then, provided that k < M, any physically realizable approximate of (co) will have a
non-negative unit impulse response. If the value of k is increased without altering T„{co)
then the transient response of the network will be delayed in time but its shape will not
be altered. Thus, the value of k discussed in this paragraph can be considered to be an
upper bound on the upper limit of integration in Eq. (7) and a lower bound on the
magnitude of the phase slope.
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