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1. Introduction. The numerical solution of partial differential equations by finite
differences can be accomplished either by explicit or by implicit difference schemes,
depending in great measure upon the class of problems to which a given equation belongs
and also upon the subsidiary conditions which are. imposed upon the solution. For
instance, if a hyperbolic differential equation with Cauchy boundary conditions is under
consideration, it is generally possible to find an explicit difference scheme according to
which the solution at any given instant is determined explicitly in terms of known values
at a few preceding time intervals. On the other hand, it is inherent in the nature of an
equation of elliptic type, with Dirichlet data, that the solution at any interior point of
the region throughout which the equation is to be satisfied depends upon the data at
every point of the boundary of the region. Consequently, in this case, any explicit
technique must involve all the values prescribed at the boundary. In general, even if
such an explicit difference relation can be found, it is not in a form which lends itself to
practical computation. It is usually necessary, therefore, to have recourse in this case
to some implicit difference scheme, that is to say, one in which an undetermined value
is defined always in terms of relations among other values, equally undetermined. The
solution of such implicit schemes in most instances is extremely difficult, as it reduces
ultimately to the solution of simultaneous equations involving a large number of un-
knowns interrelated in a manner quite unsuitable for easy determination. If the system
is linear, there are several classical methods by which it may be treated; most notably,
by direct inversion of matrices of large size [1], by iterative procedures [2] and by relax-
ation [3]. It is the purpose of this paper to introduce a finite difference technique especially
adapted to the solution of boundary value problems. This method depends upon the
selection of an implicit difference scheme involving relations among only a limited
number of the unknowns at a time, in a form that can be conveniently solved. It is
especially well suited for use with digital computing machinery since the demand for
memory capacity is small and the time required for computation is short compared with
other existing methods, even when meshes of large size are involved.

In this preliminary report, the conditions for stability of the process are investigated.
Criteria are derived for stars appropriate to various classes of partial differential equa-
tions. Applications of the theory to problems of both hyperbolic and elliptic type are
discussed and the advantages of the method are illustrated.
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**Now at the University of Adelaide, South Australia.
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Fig. 1. Typical meshes for boundary contraction

2. Boundary contraction. Consider a region ® (Fig. 1) bounded by a piecewise
smooth Jordan curve S, and let ® be referred to an (r, §) coordinate system topologically
equivalent to the polar system with the contour S, taken to be the unit circle. A sequence
of concentric contours S, , S, , - - - of decreasing radius, which will be referred to as circles
in the following, may be defined interior to S, and a mesh fitted onto ® by considering,
as nodal points of the mesh, the points of intersection of the circles of this sequence
with a finite number (N 4 1) of radii from the origin. Suppose that the prescribed data
are sufficient to determine initially the values of the solution at the nodal points on,
say, (7 + 1) of the outer circles S, , S, , - -+ S; . For instance, if Dirichlet data are given,
S, is preseribed initially; if Cauchy type data are prescribed involving both the values of
the solution as well as its normal derivative at the outer edge, then S, and S, are given
initially. The contraction method for solving boundary value problems is a step-by-step
process that is initiated at the outer boundary, where the originally prescribed data are
given. At each stage, the solution is sought only at the nodal points corresponding to the
outermost circle where the solution remains unknown. The newly computed data on this
circle then replace those used in determining it and a new boundary value problem,
similar to the original one, arises on a somewhat smaller region interior to the previous
one. For example, if the data are known on S, , S, --- S; , this information is used to
compute only the unknown data on S;,, ; then, the known informationon S, , S,, ---,
S;.1 is used to determine S;., ; and so forth. The new problem is treated in a similar
fashion and the solution moves inwards progressively with the boundary being con-
tracted onto the center. It should be observed that the data, as specified at the outset,
are soon forgotten but that the information is propagated to the center in modified form
as the new conditions on the inner boundaries. Thus, when using this method, the tre-
mendous advantage is obtained that at any given stage it is necessary to work with
only a small proportion of the total number of nodal points of the mesh.

3. Stability and propagation of error. The questions of stability and propagation of
error are critical ones for this numerical method. This may be understood most easily
in terms of the notations that will be used subsequently. Let the angular arguments of
the (N + 1) radii, to which reference was previously made, be denoted as 6,, (n = 0,
1,2, ---, N) and u(k, n) = u(r,, 6,) be the value of the solution at the nodal point
defined as the intersection of the radial line determined by 6, with the circle S, , (k = 0,
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1, 2, ---) which has radius r, . Also, let v, be the column vector with the components:
u(k, 0), u(k, 1), --- , u(k, N) which are the values of the solution on the circle S, . The
contraction process consists in the repeated application of a transformation A, that
relates the (j 4+ 1) vectors Viyju1, Virj, *++ , Viur to the (7 + 1) vectors Vi, , Verjoy ,

-, Vi . In the particular case of linear differential equations to be considered here,
the transformation is expressible in matrix form. Using block representation, this can
be written in the form:

[vk+l Vi

Vit Vitr

: =A. | (1)

’kawn (Vs j

Thus:
k
(VeriVirz *** Vieg} = [ Advov, «-- v, ). @)

=0

For typographical reasons, here and subsequently, it is convenient to write column
vectors row-wise, using braces, as:

u(Or 1) . Vo
u(0, 2) v,
: = {u(0, Du(0, 2) --- u(0, N)}; | = {vovy - vy}l
u(0, N) v;

To illustrate the notation with an example, suppose that an explicit star relation is
givenby: u(2 + k,n) = 1/2[u(l +k,n—1) +ul +k,n+ 1)] + 1/4 [ulk,n — 2) +
2u(k, n) + wu(k, n 4+ 2)] where the indices corresponding to the angular argument are
assumed to be reduced modulo N + l1and k = 0,1, 2, --- . Then: v,,, = Pv,,, + Qv,
where P and Q are the (NV 4+ 1) X (N + 1) circulant matrices

010 -+ 01 2 10 01
L I ¢ o=z 71 10O
100 --- 10 100 --- 1 2

Using block representation:

[v,,“ _ {0 I ] Vi ]
- b
Vi+2 P Q Vi+1
where 0 and I are respectively the (N + 1) X (N + 1) zero and identity matrices. In
this simple case, the matrix
A= [o I}
P Q
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= Ak+1 [vﬂ] .
Vi

As k increases and the solution moves inwards, an error made at some point in the
calculation may be propagated forwards and may give rise to a first type of instability.
This may be examined by assuming that for some integer m, an error e,,.; is introduced
in v,,,, , and then determining the resulting error at a later stage. From (1) this is given
bY €m+r+s+1 , Where:

is independent of k, so that

Vit

Vi+e

m+k

{€m+k+1 ce 3m+k+i3m+k+i+1} = I_I As{o -0 9m+i}- (3)
The magnitude of the resulting error can be measured by comparing |e,.s+;.: | With
| £n+; | where | € | is the maximum modulus of the components of . If v(r) is the vector
consisting of the values of % on the mesh circle of radius r, and if an error occurs in v(r’)
for some 7’ > r, then the resulting error in v(r) will depend upon the choice of mesh used
in going from 7’ to r, since, in general, the matrix A; is determined by the mesh. For
each mesh, let m + j be such thatv,,.; = v(+') and k such that v,,,;.;,1 = v(r). Assuming
that the solution is uniformly bounded over ®, for stability of the contraction process,
it is required that e,,.4,;.+; be uniformly bounded as the mesh decreases, independently
of r and #. This in turn, requires that the matrix product (J]*-, A:) should remain
bounded for all k& as the mesh decreases. Thus it is possible, in further consideration of
the first type of instability, to limit discussions to this matrix product.

It should be noted that Eq. (1) is an explicit vector relationship to determine vy, ;. ;
however, the components of this vector need not be explicitly determined and they are,
indeed, usually related implicitly one with another. The solution of these implicit
relations gives rise to a second type of instability which is described best, perhaps, by
the aid of a simple example. In particular, for the case k = 0, j = 0, consider the approxi-
mating star relating the components of v, to those of v, :

esVu(l,n + 2) +ePull,n + 1) + ciPul, n) + ciPu0,n + 2) 4)
+¢%u@0,n + 1) +¢”u@0,m) =0 (=0,1,2,---,N),
where the indices corresponding to the angular argument are assumed to be reduced

modulo (N + 1). If ¢V’ # 0, this may be solved as:

u(l,n + 2) = —(;-11—)) 2 ul,n +s) — (c%) Z:,)cf"’u(O, n+s), (5)

2 8=0

which implies that, for each » = 0, 1, 2, --- , N, u(1, n 4+ 2) is computed
from (1, n + 1), 4(1, n) and the nodal values on 8, . The system (5) can be expressed
as a matrix equation:

full,m + D ult,n + 2} = 6lut, W ui,n + D) — (FJERY,,  ©

where:
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G=[ 0 ! ] @

(1) 7,(1) ) 7.(1)
—co Jc; —c /e

H,is the 2 X (N 4+ 1) matrix:

Ho=[0 0 0 0 .- 0] ®
C(()O) C{O) c;o) 0O .-+ 0
and Ris the (N 4+ 1) X (N + 1) matrix:

0100 00

0 010 00

0 001 00

C )

000O0O -10

1000 - 00
The system is seen to be in a very convenient form for numerical solution since v, is
already known, so that once %(1, 0) and u(1, 1) are determined, then u(1, 2) can be
computed explicitly from (5) with n = 0; similarly, with «(1, 1) and »(1, 2) not known,
u(1, 3) follows with n = 1; and so on. To determine (1, 0) and %(1, 1) it is merely
necessary to start the process with a good initial guess for these quantities and perform
the indicated calculations by making a complete circuit around 8, , coming back to
u(1, 0) and u(1, 1). In virtue of the continuity of u in ®, the results obtained at the end
of the circuit will agree with those at the beginning, whenever (4) is a linearly independent
system of equations, if and only if they are the correct solutions. Thus, the implicit
scheme (5) really reduces to two simultaneous equations in two unknowns. Analytically,
the system (6) may be solved in the same way by carrying out the indicated substitutions
and equating the end result to the initial value. Then:

{ul, N + Dul, N + 2)} = {ud, 0) u(l, 1)}

N (10)

= G¥"{u(1, 0) u(1, 1)} — (c‘_“) > G 'HR'v, .

2 t=0
It is clear from (10) that the numerical calculations will become unstable as they proceed
around 8, , if the iterated matrix G is unstable. Thus, a second stability condition, in
addition to the one previously indicated, must be satisfied if a boundary value problem
is to be solved satisfactorily by the contraction method.

4. Instability of the first type. In this section criteria will be developed for stability
of the first kind discussed in Sec. 3 above. At the outset, a restriction is imposed upon
the type of star to be considered and it will be assumed that this is limited to an approxi-
mating function of the general form:

N N
e uk i+ L,n4+9 + 2 eluk+jnt9 + - (11)
a=0 s=0

N
+ ZC:O)u(k:n'l's) =0, (n = 0,,2,---,N;k=0,1,2, o).
&=0
It should be noted that the weights c{* in this system of equations are independent of
n as well as k, which implies that the basic form of this star is unchanged as contraction
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moves inwards and also as the computation moves around S,.;.; . A star of this type is
appropriate, for instance, to homogeneous linear partial differential equations which
have constant coefficients when referred to the chosen mesh system. Certain generali-
zations upon this will be indicated later in Sec. 8.

The stability criterion for the system (11) corresponds in a simple way to the system
itself. To illustrate this, the final results obtained in this section will be stated here.
By taking k = n = 0, a set of (V. + 1) algebraic equations can be derived from (11) by
replacing the (0, s), u(1, s), --- , u(j + 1, s) with o* (where w is any of the (N + 1)
roots of w**' = 1) and multiplying each sum starting from the left by A***, ¥, --« |\,
1 to obtain:

N N N N
NI ey N et 4 o A e’ + D el%" = 0. (12)
8=0 =0 8=0 8=0
The essential condition for the stability of (11) as contraction moves inwards relates
to the roots of (12). If the circulant matrix CY*" defined by (14) is non-singular, necessary
and sufficient conditions for the stability of the system (11) are that for each value of v, the
(G + 1) roots of (12) should be distinct and have moduli less than or equal to unity.
It may be remarked that in practice this stability criterion reduces to an exceedingly
simple condition since a great number of the weight factors are usually zero. For instance,
the stability equation associated with (4) is:

AMesPo® + 0w + ef) + (€500 + ¢f%0 + ¢”) = 0.
For the derivation of this result, Eqs. (11) can be combined into a matrix equation:

C(iﬂ)vkﬂ'u + C(i)vk+i + - + C(l)vkn + C(O)vlc = 0; (k = O: 1; 21 o ')’ (13)

where C** is the circulant matrix:
. ) ) oy
c((,t) cl(-) C;') . CI(V')
L S S S

N
CY = e e e - 2| = 2 'R (19)
=0
PO CIIC IR

If Egs. (11) are sufficient to determine w(k + j + 1, 0), u(k + j + 1, 1),
«++,u(k + j -+ 1, N), the system must represent a linearly independent set of equations
in these unknowns; this implies that C*/*" must possess an inverse (C“*")™" = D and:

Vitier = _D(C(i)vk+i + C(i-l)vlc+i—l + -+ C(O)Vk)- (15)

It is convenient to express (15) in a form similar to (1):

{Ver1Viso <o+ Viein}] = A{ViViy -+ Viei} (16)
with
0 I 0 . 0
0 0 I 0
A= . . . . . , 17)
0 0 0 . 1

_Dc(O) __DC(I) _Dc(z) . _Dc(i)
where I is the (N + 1) X (N + 1) identity submatrix. It should be observed that by
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virtue of the assumption that the weights ¢!” do not vary with r, the matrix A does not
change as contraction proceeds. Equation (2), therefore, in this case becomes simply:

{Vk+1vk+z tee vk+i+l} = AHI{Vovx ve V,-}. (18)

It is familiarly known [4] that the stability of an iterated matrix depends upon its
eigenvalues and eigenvectors and that if the matrix has a full complement of eigenvectors
then a necessary and sufficient condition for its powers to remain bounded is that the
moduli of its eigenvalues are less than or equal to unity. The eigenvalues and eigenvectors
of A can be found, by virtue of the fact that the matrices C**’ are circulant, or rather,
by virtue of the fact that the weights ¢{* do not vary with 8. Let X be an eigenvalue of

A and {x,, x,, - -- X;} an eigenvector, where each x; has the same dimension as v; . The
relation
0 I 0 Xo Xo
0 0 0 X, X,
° 0 I Y 19)
0 0 . I Xj1 X;-1
-DC” —-DC” . —DC®?) x; X;
gives X;,, = Ax; (¢ = 0,1, ---, j — 1) so that the eigenvectors of A are of the form:
{Xo AXo A’Xo -+ - N'X,}. (20)

The vector x, satisfies

(xi+]c(i+l) + )\iC“) + xi—lc(i-l) + .. + AC(” + C(O))xo = o’ (21)
which can be written as

N N N N

(>J'“ DR AN PR A4 o N PR+ Y c£°>R‘)x0 =0, (22
8=0 =0 =0 2=0

where R is defined by Eq. (9). The eigenvectors of R are {1 w ® --- «"}, where w

ranges over the (N + 1) roots of "' = 1. If x, = {l w® +-- "}, Eq. (22) gives:

N N N N
>\i+1 Zc:iﬂ)wt _I_ )\i Zc:i)wc + ... + A Zcfl)wu + Zcimwc = 0. (23)
8=0 8=0 s=0 8=0
For each value of w, (j + 1) values of A are determined and if these are all distinct, (j + 1)
distinct eigenvectors of A are found from (20). As w ranges over the (N + 1) roots of
unity the full complement of eigenvectors of A are obtained and A is stable, provided
that all the roots of Eq. (23) have moduli which are less than or equal to unity. This is
the result stated at the beginning of the section.

It is interesting to comment upon the type of instability which occurs when the
above conditions are relaxed. This is most easily discussed by consideration of the
classical canonical form B to which A can be reduced by a similarity transformation
[5]. The matrix B is composed of a number of primitive blocks (8;) of the type

A 1.0 - 0
0 1 -0
=] - - - - (29

0 0 0 -1
OOO'X,’
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Since A is similar to B, the powers of A are similar to the powers of B and the behavior
of the latter is as the behavior of the powers of its primitive blocks (8;). In case any of
the roots A of the system of Eqgs. (23) has modulus greater than unity, then B* increases
exponentially like \* so that B, and consequently A, is unstable. In case all the roots of
(23) have moduli less than or equal to unity but one or more has multiplicity two, then,
at worst, B* increases like

[" 1]" — 0(k). (25)
0 A

More generally, if one of the roots has multiplicity m, then B* = O(k™"). In such in-
stances, the matrix is subject to a controlled instablity, which may be suitable for
many problems when the number of contracting steps inwards is not large.

5. Instability of the second type. In the example of Sec. 3, illustrating the second
type of instability, Eq. (4) was solved for u(1, n 4+ 2). Provided c¢{" # 0, the same
star could be used to compute (1, n) from »(1, n + 2) and u(1, » + 1); or alternatively,
if ¢ = 0, to compute u(1, n + 1) in terms of u(1, n + 2) and u(1, »). In each case,
however, a different stability condition is implied. The generalization to the more complex
star (11) is quite simple but involves some notational inconveniences. Suppose that
ci* 5 0 and foreachn = 0,1,2, --- , N the value u(k + j + 1,n + p) in (11) is
computed from

N
wk+i+1Ln+p = —/c*") X e Pulk +j+ 1,0+ 9
s=0 (26)

i N
= (1/e*) 20 2 culk +i,n + 9),

t=0 s=0

where the prime on the sum means that s # p.

It is implied by (26) that an initial guess for v,,;,, is made, u(k + j + 1, 7n + p)
is evaluated from Eq. (26) and then this newly computed value replaces the previous
estimate. The same procedure is applied to each mesh point of S,,;,, in turn and at the
end of the first circuit the new values are compared with the old. If they do not agree, a
second circuit is made and the process is continued until the solution of the system is
obtained. With the indices corresponding to the angular argument reduced modulo
(N + 1), Eq. (26) can be written in matrix form as:

uwk+j+1,n+2+0p) wk+j+1,n+1+4p
uk+j+1,n+ 3+ p) uk+ji+1,n+2+p)
wk+ji+1l,n+44+p| =Gluk+i+1,n+3+0p 27
Lt(k+]'+1, n + p) wk+i+1,n—14p)

i
- 1/e;"*") E HR",.,,

1=0

where
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0 1 0
0 0 0
6=| ° ° 0 29)
0 0 . 1
C(T;l) (i+1) c(iﬂ)/c(:ﬂ) . c(y_-n)/c(u-l)
and H; is the N X (N + 1) matrix:
0O 0 O 0
o 0 o0 - O
H,=|- . C. (29)
0o 0 o - 0
PO C I O B ()
From Eq. (27), at the end of a circuit:
wk+j+1,n4+1+4p) uk+ji+1,n4+1+p
uk+i+1,n+24+p)| _ qvajuk+i+1,n+2+p
: =G : (30)
wk+ij+1Ln—1+p wk+j+1,n—1+p
i N
— (1/6,(,“1)) Z Z: GN-‘H;R"HV,,H .
i=0 t=0

It is clear from Eq. (30) that in making the circuit around S;. ;4 any error which may be
introduced will be propagated in a manner which depends upon the properties of the
iterated matrix G. To guarantee stability of G, it is essential that its non-zero eigen-
values should be distinct and have moduli less than or equal to unity. But G is seen to
be in its Jordan canonical form [5] so that its characteristic equation is simply:

(i +1) N ( l) N-1 (i+1) N=2 (i+1) (
et + ¢’y + ciitVu coe e i = 0. (31)

Thus, the second stability criterion is that the non-zero roots of (31) should be distinct and
should have moduli less than or equal to unity.

If the solution of Eq. (27) is to be found iteratively by using the results after one
circuit as the initial guess for the next and if this process is to converge, conditions
slightly stronger than those for stability must be satisfied. It ¢s essential for convergence
that the moduli of the roots of (31) should be less than unity.

It will be recalled that the first stability conditions required that the circulant matrix
CY*" should have an inverse. This is equivalent to the condition that it has no zero
eigenvalues. If CY*" is written:

N
c(i+1) = Zcf“”R'. (32)

8=0

then its eigenvalues are given by:

E (i+l) (33)

=0
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where "' = 1. This is equivalent to:

ud (7+1) ul ( ( ) N ul ( ) N
etV = VY = o DN, 34
g w ‘Zo 2 w gc w (34)
where the subscript indices of the weight factors are reduced modulo N + 1. From
this it follows that a sufficient condition for C““*" to be regular is that the equation

N
26l =0 (35)
8=0
should have no roots on the unit circle. Identifying this with (31) it is seen that the
criterion for convergence is sufficient to ensure the regularity of C**".

6. Example of an equation of hyperbolic type. It is required to find the solution:
uw = u(r, 0), of the hyperbolic equation * (3*u/0r") — (3°u/36*) = 0 in the region
0 < r = 1, satisfying (1, 0) = f.(0), du(l, 6)/dr = f.(6) on the boundary
and |u(r, 6) | £ M in the interior of this region, where M is some constant. As mesh, let
S, be the unit circle, S, the circle of radius r, and choose r,../r, = p where p is a constant
0 < p < 1; also, let u(k, n) = u(r, nAf), where A9 = 2x/(N + 1) for some integer N.

The first boundary conditions are satisfied by taking u(0, n) = f,(n A6). The de-
rivative appearing in the second boundary condition may be replaced by its divided
difference approximation: du(1, 6)/dr = [u(0, n) — u(1, n)]/(1 — p) so that: u(1, n) =
u(0, n) — (1 — p)f2(nA0).

It is possible to select a suitable star for this problem that involves eleven nodal
points so that only ten multiplications are necessary to compute one of the nodal values
from the rest. A typical stencil is given in Fig. 2.

k+1, n=2

Fig. 2. Stencil for hyperbolic equation

In this case, the solution on S,., is determined always in terms of its known values
on S..: and Sgsothat j + 1 = 2in (11).

An approximation for the second derivatives appearing in the differential equation
may be defined by taking linear combinations of the fundamental difference approxi-
mations at different points in the stencil. Thus for any selection of the real numbers a
b, ¢ such that a 4+ b + ¢ = 1, a difference approximation may be defined

—zwxl“,a {ajuk + 1,n + 2) — 2u(k + 1,n + 1) + uk + 1,7)]

a
+euk+ 1,7 —2utk +1,n — 1) +uk 4+ 1,n — 2)1}.
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In a similar way, using divided differences:

26u 2
= 2~p(l—p)(1+ ){d[u(k+2,n+1)—(l—l—p)u(k+1,n+1)

+ pulk,n + D] + efutk + 2,n) — (1 + puk + 1,n) + puk,n)]  (37)
+ flutk + 2,n — 1) — (1 + puk + 1,n — 1) + pulk,n — 1)1},

where d 4+ ¢ + f = 1. The stability criteria may be satisfied for a wide range of values
of the parameters a, b, ¢, d, ¢, f and this fact may be used in actual practice to assist in
the selection of an approximating star which is the most accurate possible, compatible
with these conditions. However, we are not here concerned with the problem of accuracy
and we therefore assign the parameters in such a way that the resulting algebra is some-

what simplified. Choosinga = 1,b = — 1/4,¢ = 1/4;d = 1,e = — 1/4,f = 1/4, the
following difference approximation to r* 9°u/dr° — 9°u/36°> = 0 results:
2

—1 1 _
A=Aty Mkt 2t D = dul+ 2,0 + dukk + 2,7 — 1))

2u(k+1 n+2)+(4A0 p(lzp)z)u(k-*_l"n-,-l)

1
+ (2p(1 - P

5 = itk + 1, 8)

3 1
+ (4A02 T 2p(1 — ,,)z>“(k +1Ln—1 - 4A(,2u(/’c +1,n—2)

2 . . _
O ME e+ D = dutk,m) + dulkn — D] = 0.

From Eq. (12) the first stability equation is

2w —3+ 1™ [1 2 9
i+t~ Lare T (p(l — o) 4Aoz)“’

7 1 1 3 -1 1 s
+ (4A6’2 T 2p(1 — p)z) + (2p(1 — o 4A02>°-’ + YN et :I)\ (39)

y2e—i+der) 20 —F+ e {Ae
1—=p'A+p  p1—p1+p

p<1—p>’(1+p)[_1_ ( 2 __2_) 1 ]
2 A02w+ p(l—p)2 AG +A02°~’ A+ pp =0,

where w = exp {2nm¢/(N + 1)}, (n = 0,1, --- , N). It is advantageous geometrically
to take A9 = (1 — p), so that Eq. (39) reduces to:

N — (1 + p)[(l — 9+ pcos (szfl)]x +p=0. (40)

A quadratic equation: z° + px + ¢ = 0 with real coefficients has roots with moduli less
than or equal to unity in case 1 = ¢ = | p | — 1. Application of this result easily demon-
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strates that the roots of Eq. (40) have moduli less than or equal to unity. The equation
M—@Q4+ 91 —p +pcosp+p=0, (41)

has equal roots only if

2
_px20t -~ 1
cos¢ = PR (42)
and Eq. (40) will have equal roots only if ¢ = 2nx/(N + 1) for somen =0,1,2, --- , N.

Since Eq. (42) can be satisfied, if at all, only for isolated values of n, it is not difficult
to select values of N so that the roots of Eq. (40) are distinct.
The second stability equation, from (38), is seen to be

#2—%1“"'%:0’ (43)

and it is readily verified that the roots of this equation are distinct with moduli less
than unity.

With the boundary conditions taken to be f, = cos 8, f, = 1/2 cos 8, the analytic
solution: u = % cos [(3)"/* (log 7)/2] cos 6 for the differential equation can be found. A
comparison between the computed and the actual values indicates that with (N + 1)
as great as 1000, stability was indicated for as many as 250 steps inwards so that a mesh
of 250,000 nodal points was involved.

7. Example of an equation of elliptic type. The most important application of the
boundary contraction method is to partial differential equations of elliptic type. No
essential difficulty exists as a consequence of the well-known distinction between elliptic
and other types of partial differential equations. In practice, however, it is not easy to
find difference schemes for this class of equations that fulfill the stability requirements.
In another paper [6], the authors have presented a detailed analysis of Laplace’s equation
in the circle. It was found that for this equation a modified version of the method pre-
sented here was preferable. However, the stability criteria related back to a simple form
of those which have been given here. Solutions have been computed over a mesh of 2,500
points and accuracy to six significant figures has been obtained for a variety of boundary
conditions. Stability was verified up to 200,000 nodal points but similar accuracy cannot
be claimed for meshes of this size.

8. More general forms of stars. By arguments analogous to those used in the fore-
going paragraphs, the contraction method may be shown to be valid equally well for
stars of the form

N N
2o ulk + i+ Lnts) + 2 ulk + i+ 9+ oo
s=0 =0 (44)

N .
+ > cPulke,n + ) = F(r, 0)
8=0
which correspond to a non-homogeneous linear partial differential equation. Equation
(44) can be expressed as:

{vk+lvk+2 s vk+i+l} = A{vkvk+l v vk+i} + B, , (45)

where B, is a matrix independent of the v; . It follows readily that the stability properties
of Eq. (45) depend only on those of the matrix A, which has been fully discussed.

A further generalization is possible to a system in which the weights ¢ may vary
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with the radius, as the contraction moves inwards. This implies from Eq. (1) that the
matrices A, depend upon r. It is found that sufficient conditions for stability of the
first type for a star such as:

N N
Eo ¢ (rassayue +§+ 1,n +5) + Zo e (rusulk + j,n +8) + -

(46)
+ i O ulk, n + 9 = Fr, 6)

are: (a) that the mesh be taken sufficiently fine, and (b) for each w, such that
w"*' = 1, the roots of the equations

N N N
N Z e P rri)e’ + N chi)(rui)w' + -+ EC:O)(TI:)‘O' =0 (47)
8=0 e=0 8=0

should be distinet and should have moduli less than unity, uniformly in k. This result
follows from the proposition {7] that if a matrix A = A(r) is continuously dependent
upon a parameter r which takes on a sequence of values: {r; |7 =0,1,2, ---} in a closed
bounded region, then the matrix product ][ A(r;) is bounded, provided A(r) has a full
completement of eigenvectors, the moduli of the eigenvalues of A(r) are uniformly less
than unity and § = max; [|r;s, — 7;|] is sufficiently small. The second stability criterion
for Eq. (46) becomes simply that the non-zero roots of

N
Z c:(a:”(rh-i-u)#N_" =0 (48)

n=0

should be distinct and have moduli less than unity.

The generalization to stars in which the weights c¢{” are dependent upon the angular
argument has not yet been made.

9. Further investigations. Further investigations of the contraction method are
being made by the authors. The method is being generalized to include other classes of
partial differential equations and to stars which depend on the angular as well as the
radial arguments. The possible applications of the method to irregularly shaped bound-
aries, to multiply connected regions, to mixed boundary value problems and to non-
linear equations will also be considered.
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