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THE CALCULATION OF HEAT FLOW IN MELTING SOLIDS

BY

MARK LOTKIN
AVCO Research and Development, Wilmington, Mass.

I. Introduction. The numerical integration of certain heat conduction equations
was treated by the author in [1]. The case considered there dealt with the transfer of
heat in a one-dimensional finite slab composed of materials possessing variable thermal
properties, subject to appropriate initial and boundary conditions.

The purpose of this note is to extend the previous discussion to include the phe-
nomenon of melting. In carrying out this extension it turns out to be advisable to modify
the numerical technique of integration used in [1] by going to unequal subdivisions
in both space and time variables. Near the melting surface, where the changes of tem-
perature may be very pronounced, it is advantageous to choose rather small integration
steps. Farther away from the melting surface, on the other hand, where the temperature
may change rather slowly, a more economic treatment of the integration process may
be achieved by taking relatively large intervals in the independent variables.

In the following sections, then, the physical situation is first defined, and the govern-
ing mathematical equations are stated. These differential equations are next replaced
by analogous difference equations, and the resulting truncation terms are noted. It turns
out that the stability characteristics of the method are quite similar to those established
in [1],

As numerous calculations carried out on the IBM 704 machine by means of a program
based on some of the equations discussed here have shown, the procedure derived in
this note leads to quite satisfactory results.

II. System of differential equations. Let us consider, then, the one-dimensional
conduction of heat in a solid slab consisting of one material, and extending from x = 0
to x = a, with the surface at x = a to be insulated. Through the face initially located
at x = 0 let heat enter at the rate q(t). Let it further be assumed that the amount of
heat flowing through the frontal face is at times sufficiently large to raise the frontal
temperature to the melting temperature um of the material, thus actually setting off
the melting process, and continuing it until the temperature drops temporarily below
um . If, upon melting, the liquid material is assumed to be removed instantaneously
the "frontal" face of the solid is seen to move forward, to a position x = s{t) at time t.
Of interest then is the temperature u = u(x, t), and the amount sit) melted.

The basic equations governing the melting problem described above are:

Cpl = to(fcS) S(t) - * - a' <>0, (1)

where c, p, k denote known functions of the temperature u.
Initially,

u(x, 0) = f(x) <um 0 < x < a, t = 0. (2)
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(3a)

= s(t), t > 0. (3b)
(3c)

At the frontal face

—k(du/dx) — q(t) — pFs'

with s'(t) = 0 for u(s, t) < um

s(t) > 0 for u(s, t) = u„

At the back face,
(du/dx) = 0, x = a, t > 0. (4)

As pointed out by Landau [2], the numerical treatment of the problem is simplified
somewhat by the removal of the moving boundary, by means of the transformation

£ = (x - s)/(o - s). (5)

Clearly above equations then become.

u(x, t) = [/(£, t),

"[ft 0S£SI- ,>0' (6)
ua,o) = m <um, o<f<i, t = o, (7)

with

-5^1 (f) = «<» -
s'(t) = 0 for {7(0, t) < um

s'(t) > 0 for (7(0, t) = u„.

(8a)

| = 0, t > 0 (8b)
(8c)

{dU/dQ = 0 £ = 1, t > 0. (9)
III. Definitions and assumptions. Let us assume that n + 1 values £,, i = 0,1, • • • • n

are given in 0 < £ < 1, with f0 = 0, £„ = 1. Further, let V;£ = V< = & — , V,< =
tj — <,_! for i = 1, 2, • • • n, j = 1, 2, • ■ • ; <0 = 0, and £/(£,• , t,) = C/i(- , c(?7,,) =
Ca , q(tj) = qj , a = k(cp)~\ and ru = au V,+it [(a - s,) V,+i£]~2, with V„+,£ =
V„ £ for i = 7i.

In the subsequent numerical treatment extensive use is made of the relationships:

1 (dmw\ "f? ^(Dii+m)w\ (d"+,w\ , |B+1_„
m\ Wrv." h " vd,f*-),..., + Const 1'1 • <10)

which expresses the presumably existing derivatives of an arbitrary differentiable
function w(z) evaluated at z = z0 in terms of the divided differences based on the points
(z, , w<), i = 0, 1, 2, • • • :

(Dw/Dz)10 = — w0)/(zi - z0)

(D2w/Dz2)2Q = \{Dw/Dz)2l — (Dw/Dz)10\/(z2 — z0), etc.; (11)

in Eq. (10) a-m> denotes the ith symmetric function of r0, n , • • • , r<+m_x ] tv = z ~ z„ ,
r = max | z — zp |, and (dn+1w/dzn+1) is to be evaluated at an intermediate value f.

*The symbol s' denotes ds/dt.
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Thus,

(f) - ■7-V P-'" - v,.,(0)'».» + ! v t + 1 \ / t + 2, •

+ V,+i(V,+i + V,«)(^jr) . + c, I
(12)

with

(f- "'v,,/" - <•»
I (90.,., - (§0,.,,+c-1 '• (i4)

V£ | = max | V„£ |, Vi = max V,i.
P"0,1, •••,»» j™0,1,2,*#*,j

Alternately, clearly also

-(f).,., - "'-'v, - v'(lrL, + c:(Vf)'' (15>
1(90,,..-(90, _,+«ivfi-

As to the nature of the function x = s(<), it must clearly be continuous, and possess
a non-negative derivative s(t) except for a finite number of values t, at which either
s(tj+) or s(tj-) vanishes.

IV. Equation for the melting rate. For the following discussion it is convenient
again to re-write Eq. [6] in the form:

d2U _ (a - s)2 [dU _ 1 - ( . dU~\ _ W (dUY
d? a L dt a - sS J k\dU' ^ '

with k' = dk/dU.
In deriving suitable difference equations let us consider first the equation (8) governing

the heated surface | = 0. At time tj+1 , by Eq. (8a),

kp.j+j (db\   p.
' n o I At I ~ ®'+1 Po,/ + l"S/ + l •CL Sj+i \ Of /o.j+l

For the following considerations it is necessary to distinguish two cases, depending
upon whether the surface temperature at tj+1 is below or at the melting point um .

(i) U0,i+1 < um .
Then s,+1 = 0, s,+i = s,- . Eq. (8a) becomes

-(dU/d£)o.i+i = (a - s,)fcoi?,+l + (a - s)(fc_1),g Vt.

Now replacing (U()0,i+i by Eq. (12), and (D2U/Df)2,0 by Eq. (14), (UH)0,,+l by
Eq. (17), (U,)o,j+i by Eq. (13), there is obtained

(1 2r0i)U0,j+i 27"o,• Uit,-+i = U0j "I- 2fo,(<i s,) Vifcoj^j+i "I" Hi > (18)
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with

Rx = aVt | U( n U,q Vi ~| « Vi V/ „ . at j-j /■<-,.\2
- L(o - s)2 ~ 2 k(a - s) VJ ~ 3(o - s)2 Um + a U,(Vt) ■ .

(ii) Uo,i+i = um .
Now (J7i)o,f+i = 0. Eq. (8a) may be written as

F PojSi+i = qi+1 + - ^ (C/£)0,f+i + Via Sj+i
-ZZ-u,a — s — ftp,]-

Again replacing (U()0,j+1 as indicated above under (i), there results, after some calcu-
lations,

k k V
FPojSj+i = 5/+i vv c T \ s,+i(C/£)o„-+1 4~ ^2 ) (19)Vila — s,-+I; za0.,-

where

J?2' = V, k'Ul const k ,r 1 /b'£7, „ 1 Vi Vtks'oct TrT^) + ^7 VlCH + ^ ~ Fs p'j 5—^ U*2(a — s) a-s "La - s e "J 2 a2

Since si+, = s,- + V,-+its'i+l + 0 ((Vi)2), Eq. (19) may be replaced by

S,+1 = ¥p^j [3,+1 ~~ Vi(« - s,) ^ ~ Dl''+1) + 2a0j + R"> (2°)

with

FtRi'-Rl+^^[ut+^U,^

In Eqs. (19) and (20) (£/£)0,j+1 is to be evaluated by means of Eq. (12). Since the accurate
determination of s' is essential for the closeness of approximation of the solution of
the difference equations to the solution of the differential equations, the evaluation
of (?7£)o,,+i by at least a four point formula seems advisable.

Equation (19) may be expressed in the form

s,+i = Aj+j Bi+1(a Sj+1) -f- R% > (21)

where

AI+l = qi+1[FPoi - K V^)0"+1]" > 0,

_ k0j(um Uij+i) p   k Vi(E/t)l ^ q
' + l Vi L 2a J '

s, = b;[f» - l-^]\

It is assumed here that (£/£)0,,+i < 0.
Similarly, from Eq. (20)

«;« = ^,+1 ~ Bj+1(a - s,) + R* . (22)
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The numerical solution of Eq. (21) may be accomplished by the iterative techniquef

2<n' = A - B(a - <r<n>)_1

<7(n+1) = a,- + (V,+i</2)( 2, + 2<n>), (23)

for n — 0, 1, 2, • • • , with <rm = a, and 53 = da/dt. It is seen that

Cn+l) (») _  B Vi + lt / (n) (n—1)\
a 2(a - <7tn,)(a - (ff "

Let us assume now that a — <r<n) > b holds for all n; this is obviously a practical
assumption. Then

I (»+l) (n) I B Vj + 1t | („) („-l) t| c —a |< I a I'

whence

(n + l)
(7 - ,'•> I < (^-)" I I = I

The sequence <r<n) is thus convergent provided | B\/j+1t/2b2 | < 1, a condition which
is found to be satisfied in practice. Thus, for example, for the values a = 1 inch, b =
(1/3) inch, V! = 1/100, um = 5000, p = 150, c = 1/2, k = 1/3000, F = 3000, Vi+lt =
1/4, and £7i,i+i = 4000 there results BX7t/2b2 m 1/100, so that the iteration will con-
verge rapidly. If we denote lim„_„ <r'n) by cr,- , then it is seen that

I — Sj | < Const Vji, for 0 < j < jm«x .

V. System of difference equations. The development of the difference equation
analogous to the differential equation (17) for interior points is somewhat more laborious.
Applying Eq. (17) at the point £,• , tj+1 , replacing d2U/d^ by Eq. (16), dU/dt by Eq.
(13), and dU/d£ by the central divided difference approximation obtained from Eqs.
(12) and (15),

/dU\   1^ Uj+u+i C' j,j+1 . Ui.,+ i Ui-1.) +1
\d{A.,+1~2L V<+1 + Vi

there is obtained, after some calculation, with p( = Vi+i/V< ,

+ C4 | V?

«-!.#♦«[2r<i 1 + p< 2(a - sj' v,- Si V,+1<_'

+ [l + 2pirii - (1 - p^) 2(a - s,) V~

~ [2r<'' 1 + p, + 2(a - s,) Vi P* Si V'+1<]C7'+1-'+1

= Uti + ^ (|^) [f7i+1.a- - (1 - V,)UU - Pit/,-,.,]2

+ V,[C5 | 1 + C.(V,)].

(24)

fFor convenience in writing the subscript j + 1 has been deleted in some of the following equations.
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Let us, finally, turn to the condition (9) expressing the insulation of the rear boundary.
The difference equation representing this condition may be obtained either directly
by means of Eqs. (12), (15), (13), and (17), or by applying Eq. (24) to the case i = n.
In this case, since fn = 1, and assuming Un+l = Un~itj , V„+i = V» , there is obtained
immediately:

—2r„,+ (1 + 2rn,){7n,,+i = Uni + Vt[C7 | | + C8(V<)]. (25)
It follows, then, that the system of differential equations (1), (2), (3) may be approxi-

mated by the following system of difference equations:

(1 + 2r0i)T0.i+i - 2roiTlti+1 = T0j + 2roj(a - s,) Vik~0)qi+1 if T0.J+1 < um (26)

2,'"A = A#+1 - Bi+1(a - (27)

= 0j + (V/+1«/2)[2,- + Sf+'i], n = 0, 1, 2, • • • , (28a)

To.,+1 = um , (28b)

-2rniTn.ui+1 + (1 + 2rJT„,i+1 = Tni (29)

" [*« T+J< - 2(a-"4<V.- 2' +

+ |^1 + 2rapt - (1 - Pi ) 2(a _ ^ v. 2,

~ [2r<# 1 + p.- + 2(a - J) V,- Pi '2'

= + y (f^ - (i - P,)rif - p.r..^,,.]2.
Equation (30) applies to £ = 1, 2, • • • , n — 1.

Equations (26), (29) and (30) revert to the corresponding Eqs. (10), (12), and (8)
of [1] in case of non-melting; it is necessary only to replace aV< by Ax, by At, <r;-
and by 0.
. For equal values of Vx and Vt the equations become essentially identical with those

of [3], with the exception of the relationship (19) and (20) for the rate of melting.
VI. Integration procedure. The onset and stopping of melting presents some minor

problems in the solution of the system (26) through (30) of difference equations. A possible
approach is the following:

(a) Initially, at j = 0, a0 = 0, = 0. Eqs. (26), (29), and (30) represent n + 1
linear equations in the n + 1 unknowns Tu , for i = 0, 1, • • • , n. The matrix of the
linear system is tri-diagonal, and may thus be treated by the method of solution of [1].

This step is repeated, for an arbitrary choice of time increments V,+ii, so long as

(b) Eventually it may happen that Toi = T0 (t,-) < um but T0i)+, = Ta{t, + V,+it) >
um . Then the solution of Eqs. (26), (29), and (30) is carried out for a progressively
reduced sequence V,+it, until T0,,+i = T0(tj+l) satisfies | T0 — um | < e, e > 0
prescribed. The values of T{,j+1 for i = 1, 2, • • • , n are now assumed to be correct.

Placing in Eq. (27) n = 0, <r/°> = <x,- , 2/°} = , Vmt = ti+1 - t,, and (T()0,i+1
evaluated from T0tj+1 = um , Tl,j+1 , T2,,+i, T3ii+i , by Eq. (12), there is obtained the
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value of X!/+i > arid then by Eq. (28a). This operation is repeated until convergence
to limiting values o-,+1 > 0 has been achieved.

(c) The integration is now resumed, for the equations (28b), (29), and (30), where
<Tj , ^2, are replaced, respectively, by the values of <r,+1 and X)/+i obtained by (28a),
(27). While V,+it is arbitrary, it should be restricted by the requirement that V,+is <
ViX or 2/ Vj+it < (a — <r,) Vi . Then Eq. (27) is utilized again.
This step is repeated so long as ]C>+i > 0-

(d) Eventually it may happen that <ri+1 < 0. Equations (28b), (29), (30) are now
solved with a sufficiently reduced value of Vi+ii! so as to produce ]C?+i — 0, to within
a prescribed tolerance. The next step then proceeds as in (a).

VII. Applications. In testing the method described above one may conveniently
use the case of the semi-infinite slab of a material which possesses constant thermal
properties 7c, c, p. If it is further assumed that the heat input q, and the initial temper-
ature distribution f(x) = u0 are constant, then the solution, before melting starts, of
the problem is given by [4]

u(x, t) — u0 = M'exp 2 (aty

For the time tm at which melting starts, since m(0, tm) = um , there is obtained

tm = irkcp[(um - u0)/2qf. (31)

Further, as Landau [2] pointed out, there exists a steady state solution of the system
of differential equations (1), (2), (3) for the case of the semi-infinite slab; as t —» °°

s' ->sL = q{[pF + c(um - Wo)]}-1, (32)

s(t) —> s„ = sat — kq~\um — M0) (33)

and, in general,

s' < si , Sco < s(t) < s„(i — tm). (34)

The results obtained by means of a program for the IBM 704 machine based on the
system of difference equations discussed here have been quite satisfactory. In particular,
Eq. (31), indicating the onset of melting, and Eq. (32) for the rate of melting, have been
found to hold to high degrees of accuracy.
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