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which exceed a certain critical value, damped oscillations will occur, but for values of a
less than this critical value, two aperiodic modes of decay appear. The solution of Eq.
(19) at this critical point for the principal mode I = 2 is [3]

ct2.qR2/v = 3.69 and <r2-,,/<r2-o = 0.968. (22)

For a drop of water surrounded by air (T, = 74 dynes/cm) this gives a radius R = 0.23
mm. Drops larger than this critical radius will therefore tend to oscillate while smaller
drops will be aperiodically damped.
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ON THE DIFFRACTION OF AN ARBITRARY PULSE
BY A WEDGE OR A CONE*

by LU TING (Polytechnic Institute of Brooklyn)

Abstract. By virtue of Green's Theorem, it is shown that for the diffraction of an
arbitrary two-dimensional incident pulse by a wedge of angle n, the ratio of the resultant
velocity potential to the corresponding value of the incident pulse at the corner of
the wedge at any instant is equal to 2x/ (2x — n); and that for the diffraction of a three-
dimensional pulse by a cone of solid angle u>, the ratio at the vertex of the cone is equal
tO 4ir/ (47T — co).

Two-dimensional space. The statement concerning diffraction of a pulse by a
wedge is evidently true in the special case of an incident plane Heaviside pulse which
was solved by Keller and Blank [1]. It therefore also follows for all incident pulses which
are superpositions of plane Heaviside pulses, or limits of such superpositions. Since
this includes all incident pulses it yields the preceding statement. However, these con-
siderations depend upon knowing the exact solution in a special case which the follow-
ing proof does not require.**

Let t — 0 be the instant at which the incident pulse <pM hits the corner of the wedge,
which is located at the origin (xL = 0, x2 = 0). Let h(xi , x2) and k(xx , x2) denote, re-
spectively, <pU) and <p\l) at an instant t = — t0 < 0 if the corner is absent. If G represents
the domain in the xx — x2 plane outside which both h and k vanish, then the origin must
lie outside G. When the wedge is present, the region G lies outside the wedge if the
incident disturbance (pM has not hit either side of the wedge at t = — t0 < 0. Then the
resultant disturbance <p at any instant tx > — t„ fulfills the wave equation and the same
initial conditions as that of <pM, i.e., in the region exterior to the wedge

•j
<p(—to , Xx , x2) = h(x! , x2) and ~ (—10 , x, , x2) = kfa , x2). (1)

*Received Feb. 10, 1959; revised manuscript received May 27, 1959.
**This paragraph is based on a private communication from Prof. J. B. Keller, Institute of Mathe-

matical Sciences, New York University.
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In addition <p fulfills the boundary condition dtp/dn = 0 on the two sides of the wedge,
where d/dn means normal derivative.

To express the resultant velocity potential at the origin in terms of the initial data,
it is necessary to reexamine the derivation of Volterra's formula in order to take care of
the boundary condition. The derivation begins from Green's Theorem, which states [2]:

/; S - "• §■) dA + £ m - - "• £) dA - °' (2)

where v(t, xx , x2) = [(^ — tf — x\ — x2j\ 1/2; and n, , nx , n2 are the t —, Xi — and x2
components of the unit vector n normal to the surface A in the t, xx , x2 space. Without

Fig. 1. Diffraction by a wedge

losing any generality the speed of sound is set equal to unity. The surface A consists
of (Fig. 1):

(i) A*, which is the part of the characteristic cone l/v = 0 lying in between the
planes t = — t0 , t = — 8 and the boundary planes.

(ii) I, which is the part of the plane t = — t0 , lying inside A*.
(iii) II, which is the part of the plane t = ti — 5, lying inside A*.
(iv) B, which is the part of the boundary planes, lying inside A* and between planes

t = — t0 and t = ti — 8.
The finite part of both integrals over A* vanishes as usual [2]. On the surface of the

wedge the terms inside the brackets of the integrands become the normal derivative of
v and tp, respectively. The former is shown to be zero by performing the differentiation,
and the latter equals zero according to the boundary condition. Therefore, the integral
over B vanishes.

As 8 —» 0, the finite part of the first integral over II approaches (2t — ju) <p(ti , 0, 0)
and the second integral approaches zero [2],

As a result, Eq. (2) together with the initial conditions, yields:
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(2t - n)<p(ti , 0, 0) = - h dJ, (3)

where J is the region of G which lies inside the cone A*.
From Volterra's formula, the left side of the equation is equal to '2ir(t, , 0, 0);

it follows that

<p{tx ,0,0) = vw{t, ,0,0). (4)
Z7T — /X

By the method of images it is shown that the relationship expressed in Eq. (4) is still
valid, if the incident disturbance hits either or both sides of the wedge before it hits
the corner [3].

Three-dimensional space. Let t = 0 be the instant the incident pulse 1 hits the
cone* whose vertex is located at the origin of the xx , x2 — and x3 — axes. In the absence
of the cone, the incident potential at the origin can be expressed by Kirkchhoff's formula
[4]

*"•«.o.».°> - -iI,l(;MKr]-;£P£|}«■ »
where r is the distance from the origin,

d/dn means differentiation along the outward normal to the surface S, [^<l>] =

*Here the instant t = 0 is defined differently from the previous case. For, even if <pU) hit a portion
of the surface of the cone excluding the vertex, the resultant potential in general cannot be obtained
from <p'i) by the method of images, as in the two-dimensional case.

SURFACE S

Fig. 2. Diffraction by a cone
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tpU) (xi , x2 , x3 , t — r) and [<p] is called the retarded value of <p, and S denotes a surface
whose shortest distance from the surface of the cone is greater than T > 0 (Fig. 2). The
reason for doing so will become evident later.

To obtain the resultant velocity potential at the vertex of the cone, Green's Theorem
is applied:

(w i 0 - \ t1} dS +LI - »■ <6>
where V is the volume bounded by the surface S, the two concentric spheres r — t and
r = R and the surface of the cone, and Sj , a, 2 and B denote, respectively, the surfaces
of the volume V.

A repetition of the passages in the derivation of Kirkchhoff's formula [4] gives

s+;[£]}«-• (7)

On the surface of the cone dr/dn = 0, while the boundary condition gives [d<p/dn\ = 0;
therefore, the integral over B vanishes.

Since <p = <p(,) for t < 0, the value of [<p] and its derivative on the sphere r = R is
equal to that of [<p(,)] for R > t. For a finite value of t, the integral over 2 as R —> co is
identical with the corresponding integral, with <p replaced by <p(,). This integral tends
to zero. This condition has been imposed on <pM in the derivation of Eq. (5).

As t —> 0, the integral over a approaches — (4x — co) <p(t, 0, 0, 0) and Eq. (7) becomes

= [I] - \ £ [I]} ̂ (8)

Since the minimum distance between the surface S and the cone is greater than T, the
value of [ip\ and its derivatives on S will be identical with that of [<p<0] for any instant
t < 2T. From Eqs. (8) and (5), it yields

<p(t, 0, 0, 0) = - . 4x <pw{t, 0, 0, 0) for t < 2T. (9)
47T — CO

Since T is arbitrary, therefore, Eq. (9) is valid for any instant.
This relationship can be interpreted intuitively as if the space were contracted by the

cone by a factor of (47r — co)/47r in the vicinity of the vertex so that the velocity potential
at the vertex is intensified by the reciprocal of the factor of contraction. An analogous
interpretation can be given to the two-dimensional problem.

Acknowledgment. This report was supported by the United States Air Force through
the Air Force Office of Scientific Research, Air Research and Development Command,
under Contract No. AF49(638)-445, Project No. 9781, under the supervision of Professor
Antonio Ferri to whom the author is indebted for his invaluable discussions.

References
1. J. B. Keller and A. Blank, Diffraction and reflection of pulses by wedges and corners, Communication

in Pure and Applied Mathematics 4, 75-94 (1951)
2. G. N. Ward, Linearized theory of steady high-speed flow, Cambridge University Press, England, 1955,

pp. 55-58
3. L. Ting, On the diffraction of an arbitrary pulse by a wedge or a cone, PIBAL Report No. 502, Poly-

technic Institute of Brooklyn, Feb. 1959
4. B. B. Baker and E. T. Copson, The mathematical theory of Huygen's principle, Oxford University

Press, England, 1950, pp. 38-40


