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LARGE AMPLITUDE OSCILLATIONS OF A TUBE OF INCOMPRESSIBLE
ELASTIC MATERIAL*

BT

JAMES K. KNOWLES
California Institute of Technology

1. Introduction. In recent years a number of problems have been solved in the non-
linear theory of elasticity for incompressible bodies (see [1] and [2] for discussion and
references). The work of Rivlin and others has shown that the assumption of incom-
pressibility makes possible the solution of these problems without any special assump-
tions as to the form of the strain energy function characteristic of the material. Because
of the severe non-linearity involved, the special problems considered have been static
ones and the methods of attack have been essentially inverse. The question of waves in
incompressible materials has been considered by Ericksen [7],

The present paper treats the dynamic problem of axially symmetric oscillations of
an infinitely long circular cylindrical tube of incompressible elastic material. The sym-
metry of the motion and the condition of incompressibility combine to permit the
reduction of the problem to one to which the methods of the theory of non-linear vibra-
tions of single-degree-of-freedom systems can be applied. The approach is semi-inverse
in the sense that the determination of all physical quantities is made to depend on one
unknown function which satisfies a non-linear ordinary differential equation.

The specific problem considered here is that of arbitrary amplitude free oscillations
of the tube when it is set in motion under given initial conditions and subject to no
surface pressures. It is shown that periodic motions are possible for a large class of strain
energy functions, and an expression for the period of oscillation is given in terms of the
strain energy function. The results are shown to take a particularly simple form in the
limiting case of a thin tube. Explicit results are given for the strain energy corresponding
to a material of Mooney-Rivlin type.

The static problem of the symmetrical deformation of a tube of incompressible
material by uniform internal and external pressures is a special case of a more general
problem solved by Rivlin [3] and discussed in [1]. It may be remarked that results similar
to those contained in this paper can be obtained for the radial oscillations of a spherical
shell of incompressible material. The corresponding static problem of the symmetrical
expansion of a spherical shell under pressure was solved by Green and Shield [4] and is
also discussed in [1].

2. Formulation of the problem. Consider an infinitely long circular cylindrical tube
of homogeneous, isotropic, elastic, incompressible material which in its undeformed
state has inner radius rt and outer radius r2 . A point in the tube which at time t has
cylindrical coordinates R, 8, z is assumed to have been at the point r, 6, z in the un-
deformed state. The motion is thus completely described by the function R = R(r, t).
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If Ri(t), R2(t) denote respectively the inner and outer radii at time t, the incom-
pressibility condition (see [1]) may be written

R2 — R\ = r2 — r\ , t > 0, rx < r < r2 . (2.1)

The motion is completely determined if Ri(t) is known.
Since the formulation of the present problem differs from that of the corresponding

static problem only by the inclusion of the inertia terms in the differential equations of
motion, the statement of the complete system of equations of incompressible elasticity
and its detailed reduction are omitted and the reader is referred to [1], pp. 88-92. The
notation used in this section will be similar to that of [1].

Let

Q = r/R (2.2)
and temporarily regard Q and t as independent variables.

For an incompressible material the strain energy W per unit undeformed volume
is a function of two of the three principal strain invariants h , I2 ,13 : W = W(ll , /2).
For the symmetrical deformation (RQ, 6, z) —» (R, 6, z) considered here it is found that

I\ = I2 — 1 + Q2 + l/Q2. (2.3)

Incompressibility requires that I3 = 1, a relation which can be shown to be equivalent
to (2.1).

When the stress tensor is calculated in terms of W and the arbitrary hydrostatic
pressure p, it is found that all shear stresses vanish identically. When the remaining
stresses are introduced into the radial equation of motion, there follows the differential
equation

d r _L on2 sOE t <V1 _1_ dW\ 2 , n2\(^ _l d^\ /o a\dQip+ Q ^ + 2il + Q}-M,}-Q{l + Q)\jn + wJ (2-4)
RQ d^R

1 - Q2 p dt2 '

where p is the density. The boundary conditions at the inner and outer surfaces take
for form

Q = p+ 2Q2^ +2(1 + Q2) ̂  = -Pk(t), k = 1,2. (2.5)

Here Pi(t) and P2(t) are the inner and outer applied pressures, respectively.*
The incompressibility condition (2.1) is now used to compute the acceleration

d2R/dt2 in terms of the acceleration (fRx/dt2 of particles on the inner surface. Thus

RQ d2R Q d2R, , [ Q Rj l/rffiA2
1 - Q2 dt2 1 - Q2 1 dt2 + Ll - Q2 Rl ~ r?J\ dt ) ' '

Equation (2.6) is now introduced into the right hand side of (2.4), the resulting equation

*The boundary conditions at the "ends" z = ± of the shell are taken to be of the form of vanish-
ing radial and circumferential shearing stresses and vanishing displacement in the axial direction, so
that axially symmetric motion which is independent of z is possible. This of course requires the presence
of a suitable axial stress component on the ends of the cylinder.
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is integrated with respect to Q and the boundary condition (2.5) at Qi = rJRt is imposed.
It is found in this way that the hydrostatic pressure p must satisfy

p + 20.f + 2(1 + e^ = 2£, +

+pSl WC,.

+ '(f)' L, (r^Q- - 9 srh)dQ -p' «>
The remaining boundary condition then provides the differential equation for Ri(t)
Thus when (2.5) is imposed at Q2 = r2/R2 and the integrations in (2.7) are carried out,
the following differential equation results.

p[. Ki log (i^±*)]« +1 ,[log (i^L±«!) _ rT^,](f)'

+  WE + ©«-'■«-«->• <«
In (2.8) the incompressibility condition has been used to eliminate R, = (r22 —r^+i?,2)'72.

The inner radius /£, and the velocity dRi/dt are supposed given at time t = 0.
3. The basic differential equation. The differential equation (2.8) is now rewritten

in terms of the following quantities:

x(t) = fl,(i)/Vi 1
f - frl/r') - ij , (3I)

  k <3-2»rlPJl/x V L\0^1 0*2/ Ii-I,-l + 0' + l/Q' J

In this notation (2.8) becomes a non-linear second order differential equation for the
dimensionless inner radius x(t):

* "* (' + ?).§ + ["* ('+ ?) - ^n?](l)! + '<*•') - P|('!-:;/2P,("- <3-3>
In the sequel (3.3) will be considered only in the case of free oscillations [i.e., Pi(t) =
P2(t) = 0] and subject to the initial conditions

z(0) = Xq ,

I (0) = ». . (3.4)
The function f(x, n) which is defined in (3.2) and which appears in the differential

equation (3.3) can be rewritten as follows. Let

W0(u) = — W(h , . (3.5)rip
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Then
dW0 _ 2 (dW dh dW dl2\ 2 / _ l\(SW dW\ . .
du r\p \dli du ^ dl2 du) r\P\ uV\dh dlj' '

If this fact is used in conjunction with the change of variables Q = u~1/2 in the integral
(3.2), there follows

/(*, m) = f (u- l)-1 ^ du. (3.7)
J (m+*3)/0» + 1) aU' (m+x»)/(m+1)

.24. Free oscillations. With the notation v = dx/dt, d x/dt = v dv/dx, it is possible
to write the differential equation (3.3) in the form

^ [|wV log (1 + mA2)] + xf(x, m) = 0 (4.1)

and thus to obtain the first integral

log (1 + m/x2) + F(x, fj) = C. (4.2)

The constant C = \v\xl log (1 + m/^o) + F(a"0 , ju) depends on the initial values a;0 and
v0 , and the function Fix, n) is given by

F(x, M) = f m, m) di = r £ f' du d(. (4.3)
Jl Jl J (M+ia)/(M+D

If the order of integration in the repeated integral in (4.3) is reversed, it is possible to
carry out one of the integrations and obtain

Fix, A = Hx2 - 1) f iu - 1)"2TF0(m) du, (4.4)

a form which will be convenient later. In obtaining (4.4) it has been assumed that the
strain energy vanishes in the undeformed state, so that

TFo(l) = 0. (4.5)
It is well known from the theory of vibrations (see, for example, [5]) that the motion

xit) is periodic if and only if the "energy curves" (4.2) are closed curves in the x — v
plane with a finite period jfdx/v. We proceed to consider the circumstances under which
periodic motions are possible.

It is now assumed* that

so that according to (3.6) dW0/du has the sign of u — 1 for u > 0. From this and (3.7)
and the fact that /i > 0, it follows that

<0 if 0<x<l

= 0 if x = 1 . (4.7)
>0 if x > 1

Kx, n)

*This restriction on W is implied by inequalities proposed by Truesdell [2], p. 182, and is identical
with an inequality obtained by Rivlin and Saunders [6].
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Consequently the function Fix, n) defined in (4.3) decreases monotonically in x for
0 < x < 1, vanishes at x = 1 and increases monotonically for x > 1.

For real motions x(t) it is always true that F(x, /j.) < C, so that for every x such that
F(x, yu) < C, Eq. (4.2) determines two values of the velocity v:

v = ± 2 C - 2 Fjx, M)

log (l + t
(4.8)

To show that the energy curves (4.2) are closed, it is only necessary to show that
there are exactly two values of x such that v — 0 in (4.2); i.e., such that

F(x, p) = C. (4.9)

Since F(x, n) decreases monotonically in x for 0 < x < 1, there will be exactly one
positive root x < 1 of (4.9) for every positive C unless lim x —* 0 + Fix, n) is finite. If
this limit is finite, values of C which exceed it will fail to determine a root x < 1 of (4.9).
Similarly since F(x, n) is monotone increasing for x > 1, there is precisely one root
x > 1 of (4.9) unless lim x —> «> Fix, n) is finite. If either of these two limits is finite
periodic motions can exist only for sufficiently small C.

The conditions that guarantee that the energy curves be closed (and in fact that the
motion be periodic) are thus that the integral (4.3) defining F{x, /n) be unbounded as
x —■» 0 + and as x —» °=>. To translate these conditions into requirements on the strain
energy W0 , it is convenient to consider F given in the form (4.4). From (4.4) it can be
shown directly that lim x —> ® Fix, jj.) will be infinite if only W0(it) is unbounded as
u —> o=. For the case lim x —» 0 + Fix, p.) it is observed that by the definition (3.5),

W0(l/u) = WQ{u). (4.10)

If the change of variables u —* l/u is then made in (4.4), it is found that
i _ T2 r,/x'

Fix, n) = (« - 1 )'2Wa{u) du.
z J (li+n/cp+x1)

From this it follows that lim x —* 0 + F{x, n) = 00 if the integral

f (u — l)-2JF0(w) du
J1+1/M

diverges. This will be the case if Wa{u) increases at least as fast as u as u —* . Hence
the energy curves in general will be closed if the strain energy is such that W0(u) becomes
infinite at least as fast as u as u —* <».

The two roots x = a < 1 and x = b > 1 of Eq. (4.9) are the minimum and maximum
amplitudes, respectively, of the oscillating inner surface of the cylinder.

The period of the motion is given by

r " 2 /.' f = 2 f Kc-" <««
Since C — F(x, n) can vanish only to the first order at x = a and x = b, and since x log
(1 + p-/x ) is bounded, T is finite.

5. The thin shell. A limiting case which is of interest is that for which n —> 0.
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Since n = (r2/r,)2 — 1, the case of small n corresponds to the thin shell. The question
specifically considered here is that of the limiting form of the maximum and minimum
amplitudes of oscillation and of the period as ju —> 0.

Equation (4.9), which determines the amplitudes x = a (/*) < 1 and x — b(n) > 1
may be rewritten as follows when C is expressed in terms of the initial values and after
division of both sides by ju.

Fix, m) 1 2,2 log (1 + m/zo) , F(xo , m) ,c
— o Wo *f~ •ju Z fx fx

From the representation (4.4) for Fix, ju) it is easily shown that for every finite positive x

lim^M) = 1 ^(a;2). (5.2)
n~*o + M ^

Also

lim UW. '"<5 » + >'•*> - U . (5.3)
n—*o+ Z \x Z

If a0 and b0 denote the limiting values as n —> 0 of the amplitudes a(n) and b(p), a0 and
b0 satisfy the limiting form of (5.1) as n —> 0.

Wo(x2) = vl + w0(xl). (5.4)

From the property W0(\/u) = W0(u) it follows that the maximum and minimum limiting
amplitudes a0 and b0 are related by

b0 = -■ (5.5)
OjQ

Now consider the expression (4.11) for period T. In the limit n —> 0 the results (5.2),
(5.3) and (5.5) show that

/%\/ao

T0 = lim T = 2 [vl + W„(xl) - W0(x2)]~'/2 dx (5.6)
li—►O + J a o

is the limiting value of the period of the motion as n —> 0.
It may be remarked that while the present discussion has obtained only the limiting

values of the amplitudes and the period as n —» 0, it is possible by further calculation to
obtain the correction terms of order tx, say, in the formal expansions of these quantities
for small yu.

6. The Mooney-Rivlin material. It is interesting to examine the results of Sec.4
and 5 for the case of the Mooney-Rivlin material (see [1], p. 76) for which the strain
energy function is given by

W(h , h) = §«(/i - 3) + hKh - 3), (6.1)
where a and 13 are positive constants.

According to (3.5) the function W0(u) assumes the form

W0(u) = k(u + ^ - 2), (6.2)

where
K = (a + 0)/r\p.

When the integrations in (4.4) are carried out it is found that
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F(x, m) = m 1 - **) log (11++^2)- (6-3)

For this special case Fix, n) is unbounded as x —» 0 and as x —» , so that periodic
motions exist for all values of the initial conditions.

In the limiting case of the thin shell the condition (5.4) for the amplitudes becomes

x2 + ~2 = "T? + x\ + -2- (6.4)CC iv Xq

The root a0 < 1 of this equation is readily found to be

f" vl xl 1 1 (vt 4 1 2xlvl , 2vl V/2T/2a°-L2K + 2+ 2^"2If + Xo + 4 + ~r + ^~2J J (6-5)
while the maximum amplitude is given by b0 = l/a0 .

For the initial conditions x0 = 1, v0 ^ 0, corresponding to the situation in which
the tube is set in motion by imparting to it an initial velocity in its undeformed state,
Eq. (6.5) becomes

bo = ado

(6.6)

On the other hand for the initial conditions x0 5^ 1, v0 = 0, so that the tube is released
from rest in an expanded or contracted state, Eq. (6.5) shows that the inner radius of
the tube oscillates between its initial value and the reciprocal of that value.

The expression (5.6) for the limiting value of the period takes the form

-2ir"' C (I++k - ** - ?)"" ̂
where a0 is given by (6.5). When this integral is evaluated it is found that

(„2 \ 1/2

• (6-7)

Thus in the limit n —> 0 the period of oscillation does not depend on the amplitude or
any other characteristics of the motion for the Mooney-Rivlin material.
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