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AMPLITUDES OF OSCILLATIONS GOVERNED BY A MODIFIED
VAN DER POL EQUATION1

BY

K. KLOTTER2 and E. KREYSZIG3

1. Introduction; systems treated. The classical example of a system exhibiting
self-sustained oscillations is the one described by the differential equation

q" — 5g'(l — c*V) + *1 = 0, (1)
known as the "van der Pol differential equation". This differential equation cannot be
solved in closed form. Properties of its solutions have been studied extensively, however,
by various means and from different points of view. Sparked by a paper by Levinson
and Smith [1], dealing with

3" + g(Q, Q')l' + /(?) = 0, (2)
a theory for this rather general class of differential equations was developed [2], Because
the assumptions made in that theory in regard to the coefficients of the differential
equation are rather weak (in order to keep the conclusions general), no very specific
results can be expected from it. Hence it seems desirable to investigate special differ-
ential equations or classes of differential equations, describing self sustained oscillations,
which can be treated more fully; preferably differential equations for which closed form
solutions, at least for the first integral, can be provided, if only in form of quadratures.

One of the authors [3] has drawn attention to two such differential equations, which
may be called "modified" or "associated" van der Pol equations. They are

q" - (sgn q')(e/2)q'2(l - aq2) + k2/(?) = 0 (3)

and

q" - (sgn q')(Ks)( 1 - ftq1) + K2f(q) =0 (s > 0). (4)

Equation (3) [describing a first special class of self sustained oscillations] has been
treated by the authors in a recent paper [4], and a more general form of that equation,

q'■ - (sgn q-)(e/2)q-2h(q) + k2/(?) = 0, (5)

where h(q) denotes any suitable even function, has been subsequently considered [5].
Equation (4) [describing a second special class] is the object of the present study4. This
equation has the convenient feature of allowing a discussion of its first integral by
rather simple means.

The second term in (4), which governs the energy input and output, is shown as a
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Fig. 1. Second term in Eq. (4)
V = -02s)(sgn q)(l - /3Y2).

function of /3q' in Fig. 1. In a way familiar from the discussion of the van der Pol Equation
(1) it can be shown that the oscillations governed by Eq. (4) also tend towards a station-
ary regime, a limit cycle. It is the purpose of this paper to study the maximum dis-
placements ("amplitudes") Q of the oscillations governed by Eq. (4) in general and give
particular attention to the amplitude Q* of the limit cycle.

2. First integral; amplitude relationship. In Eq. (4), q denotes the dependent variable
(displacement), dots indicate derivatives with respect to time; k, /32, s are positive
constants. The function /(g), which describes the restoring force, will be subjected to
the limitations

f(q) ^ 0 for q > 0

f(q) ^ 0 for q < 0 (6)

/(<?) ̂ 0
so that only "genuine" restoring forces are admitted. Furthermore, we will start our
discussions by requiring f to be an odd function,

/(-?) = -/(<?)• (7)
This restriction, however, is imposed solely for the sake of simplicity of the presentation;
it is not essential and will be dropped later (Sec. 4).

Because of the factor (sgn q'), there are two different forms of the differential equa-
tion, depending on the direction of the motion. However, if we reverse the direction of
the coordinate q when the motion changes direction, by putting

q = q for q- < 0 ^

q = — q for q' > 0,

Eq. (4) assumes the single form

q- + <c2s[l - /f(?T] + = 0, (9)
with q as the dependent variable.
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Writing U = q /k we find from (9)

^ + 2s(l - pVU) + m) = 0, (10)

a first order differential equation for U as a function of q. By putting

x = q/s\ y = % ; X = pVs2; ^ (11)
6 6

we may give differential Equation (10) a non-dimensional form,

f: - 2X2/ = —2[1 + *(*)]. (12)

For the initial condition q = Qi > 0, when q' = 0, equivalently x = for y = 0,
the solution of (12) can be stated as

y = 2e2X*[/(X1) - Kx)) (13a)

with I (a;) denoting

/Or) = f e~2X£[l + <KQ] dtt. (13b)
Jo

Equation (13a) holds until the motion comes to its next stop (y = 0) at x = X2 < 0.
Hence

I(X2) = I(X1) (14)

provides the relationship between two consecutive maximum displacements Q, > 0
and Q2 < 0 expressed by their non-dimensional representatives Xt and X2 . We shall
refer to (14) as the "amplitude relationship" (taking the liberty of using the term
"amplitude" as synonymous with "maximum displacement").

3. Amplitude relationships for special types of restoring forces. We start our dis-
cussion by assuming the function f(q) to be proportional to a pure (odd) power n —
2m + 1 of q,

Kq) = (n odd). (15)

The function 4>(x), then, turns into

<t>(x) = Y»£n with y„ = (jus)"-1; (16)

the expression I(x) in (13b) becomes

I(x) = [e -2Xl- 1] + Tn f* e "2XV^- (17)

Carrying out the integration and transferring to the left hand side all terms independent
of x, we find

i [JSC m + + J = e-m + t 1. (18)7n L n\ nl J Lynnl 77i v\ J
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Using the symbols z = 2\x and Z, = 2XX,- we may abbreviate the right hand side of
(18) by GJz), where

Gn(z) = e-FJz), (19)

FM = «„ + Z i , (20a)
VI

and

a. = 1 + (20b)
n\yn

Now, the amplitude relationship (14) may be written as

Gn(Z2) = G.{Z,). (21)

Because F„(z), Eq. (20a), is a polynomial of odd degree having real coefficients,
Fn(z) possesses at least one real zero, z0 ; and, because the coefficients of that polynomial
are positive, z0 has to be negative. Furthermore we note that

G„(z) >0 for 3^0

Gn(z) —> 0 as z —* oo (22)

Gn(z) —> — co as 2—>—oo.

There exists only one abscissa zi for which G'iz) = 0; it is

2! = -2\/yl/n .

Since (?"(2i) < 0 the function G„(z) has a maximum at zY . From this and (22) it follows
that

z0 < 2i , or | z0 | > | Zi |. (23)

Figure 2 shows a sketch of the general behavior of G„(?).
• A special consideration leads to the estimate for | z0 |,

| z0 | < max (n, a„) = M„ . (24)

The reasoning runs as follows. From Eq. (20a) we obtain for negative arguments z = — f
(with f > 0)

F(f) - a, - f + (l- |) + J, (l - |) + * *" + ^1)] (X ~ n)' (24a)

and we want to find a lower bound for the values f that render F(f) negative. If f = n,
the last term in (24a) vanishes, all other parentheses and, hence, f-terms are negative;
therefore, for f ^ n we find F(f) < 0, provided an ^ n. But if an > n then F(f) < 0
for all f ^ an .

Hence, we reach the following conclusions in regard to the amplitudes of the oscil-
lation (illustrated by Fig. 2).

(1) The amplitudes Q2 , Q?, • ■ • (being proportional to X, and Z,) are limited for all
(finite odd) values of n in (15) and for any starting value . In fact, for any j 2: 2 the
inequality
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Fig. 2. General behavior of function 0(2).

s7«1/n ̂  I Qi I ^ ^ Mn (25)

/io/ds, with M„ being given by (24).
(2) For two oscillations starting from values Q, and respectively, where Qi > Qi > 0

we find

I Qi I > I Q, I 1or all j ^ 2. (26)
(3) For arc?/ (finite) value of n there exists a uniquely determined limit amplitude Q*.

The limit amplitude Q* obeys the inequality (25). More specifically, Q* = (s/2X)z* is deter-
mined by the root z* of the transcendental equation

GJ—z) = Gn{z), (27)

which, because of Eqs. (19) and (20), is equivalent to
[(»—1)/2 22*> + l "1 /(" («—1)/2 2p "1

S pTTiyiJ/ h + £ Mil' (28)
where for n = 1 2/ie denominator is ax .

Equation (28) represents a relationship between a„ and 2* as a function of a„ (i.e.
of the parameters of the system); we profitably use (28) for establishing the inverse
function an(z*). From (28) and (20b) it follows that z* is a monotone increasing function
of X.

Now, let us consider special values for n. The case n — 1, because of y, = 1, leads to

Gi(z) = e~z[a! + z] (29a)

with
a, = 1 + 2A. (29b)
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z
Fig. 3. Functions Gi(z) and (?i( —z) leading to limit value z*.

Figure 3 applies to this case with X = 1/2. From the figure we find the sequences of
amplitudes. If Zi > z*, the sequence decreases; if Z\ < z*, the sequence increases to the
limit cycle value z*. From (28) we obtain

tjShi = 1 (30)
z ai

as the z* — ax — relationship which determines the limit amplitude z*. The plot for
Eq. (30) is shown in|Fig. 4.|For the example 2X = 1 we find

z
2
£tanhz = -• (30a)

0 12 3
a1
Fig. 4. ai — z* — relationship.
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Since tanh z ^ 1 we have 2* < 2, and the numerical value is z* = 1.915, equivalently
X* = 1.915 or Q* = 1.915 s for the case considered.

Figure 3 is plotted for the parameter value 2A = 1. The amplitudes of the two sample
sequences are

zr = 5 , Z'2V = -1.99, zl" = 1.93

Z<2) = 0.5, ^2> = -1.73, Z(32) = 1.90.

For large values of the parameter 2X, Eq. (30) may be replaced by

z* a, ; (31)

from this there follows

X* ~ 1 + 2\ OT Q* ^ *(* + (32)

Next, we consider the case n — 3. It leads to

(2X)3a3 = 1 +
7s3!

and to

G3(z) = e~z{a3 + 2 + f] + ft)-

From it the transcendental equation

(33)

tanh z = Z 2 (34)
6a3 + 3z

Fia. 5. a3 — z* — relationship.
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for the limit value z* is derived. The plot for the z* — a3 — relationship is shown in Fig.
5. For 2X = 1, t3 = 1, we find a3 = 7/6; hence Eq. (34) becomes

tanhz = • (35)( 6z

v _«/ ** Z
Z1

Fig. 6. Functions G3(z) and G3( —z) leading to limit value z*.

The plots of G3(z) and G3 (— z) are shown in Fig. 6 for the parameter values 2X = 1
and 73 = 1. From these plots e.g., the sequences

Zi" = 5 , Z? = -1.76, Zil> = 1.55,

Z[2) = 0.5, Z<2) = -1.46, Z^ = 1.52,

for the dimensionless amplitudes can be obtained, both leading to the limit value z*,
given by the root of Eq. (35). That root is z* = 1.532, in agreement with the sequences
shown above.

Other special cases of odd values n in Eq. (15) can be treated in the same manner.
4. Generalizations. Cases, where j(q) is not a single odd power of q, but a polynomial

in odd powers, can be treated along the same lines. For instance, if

/(?) = MrV' + Mry-,
f(z) = 1+7 n'! v - + 7 Wa! y z~. (36)

U T"' (2X)n* o A + 7"' (2X)"' o v! ^bj
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Specifically, for nl = 1 and n2 = 3, because of yi = 1, Eq. (36) turns into

F(z) = 1 + ^ (1 + 2) + 73 ̂ 3 (l + z + fj + |j) (37)

which may be replaced by

F{z) = (2X)3 + (2\)2 + 673 + 2((2X)2 + 673) + 373z2 + 7323- (38)

For the special values 2X = 1, and ya = 1, for instance, the equation (27) reads

tjmh2=?+fr (39)
This transcendental equation has the root z* = 1.282 leading to the limit amplitude
Q* = 1.282 s.

If we drop the restriction, imposed by Eq. (6b), on the function f(q) to be an odd
function, and admit non-odd functions / = /0 + /. [composed of odd, /0 , and even,
/. , parts] the function j(q") in (9) will differ for the swings in the two directions. We find

/(g) = lo(q) + /«(?) for 5' < 0 (40a)

/(?) = /o(?) - /.(?) for q > 0. (40b)
Hence, the swings with negative velocities, q' < 0, and those with positive velocities,
q' > 0, will have to be treated separately. The sequences | Z2 |, | Zt \ • • • will lead to a
value z*, developed from expression (40a) in the differential equation; the sequences
| Zi I, | Z3 | • • • will lead to a value z* developed from expression (40b) in the differential
equation. The limit amplitudes Q* on the left hand side, derived from z* , and those on
the right hand side, derived from z* , therefore, in general, will have different absolute
values.
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