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INCORPORATION OF ERROR FUNCTION ABSORPTION
COEFFICIENT IN TRANSPORT EQUATION*

by JIN H. CHIN** and STUART W. CHURCHILL {The University of Michigan)

1. Introduction. The absorption of monochromatic radiation can be represented
by the Bouguer-Beer law

T = e"'1, (1)

where T is the transmittance, x the path length and <r the spectral absorption coefficient.
However, absorption varies very rapidly in the region of a band and the average trans-
mittance over a finite interval of wave length in such a region does not follow Eq. (1).
The coefficient a cannot then be determined with an instrument of finite resolution.
Various models have been proposed for an absorption band in order to derive expressions
for the average transmittance. The Elsasser model [1] idealizes an absorption band as
an infinite array of equally intense, equidistant lines, each of the Lorentz shape, and
each with the same half width. For lines far apart relative to their half-width, this model
yields an expression for the "average" transmittance at wave length X which can be
condensed to the following form

Ta = erfc (7x),/2. (2)

The error junction absorption coefficient 7 is related to the true spectral coefficient <7 as
follows:

-1 «X+AX/2

erfc (Tz),/2 = e~" d\. (3)
A Jx—AX/2

The magnitude of AX must be such that there is no contribution to the transmittance
at the center of the interval from lines outside the interval.

Values of 7 or the equivalent have been determined experimentally for water vapor,
carbon dioxide and other gases. In contrast to <r, 7 is a well-behaved function of wave
length. For mixtures of two or more independently absorbing gases

erfc (72;)1/2 = erfc (712:)1/2 ■ erfc (72x)1/2 • erfc (732:)1/2 ■ • • . (4)

2. Utilization of error function coefficient. The objective of this paper is to demon-
strate how the error function absorption coefficient can be incorporated in a solution
of the transport equation which describes radiative transfer. Solutions of the transport
equation or its equivalent can be expressed in the following general form:

i(R, 42) = F(crx, <r,x ■ • • ), (5)

where i is the radiant intensity at any position denoted by the vector R in any direction
denoted by the vector £2. The solution is assumed to be a function of ax, u,x and other
parameters, where x is some distance characterizing the position R and cr, is the attenua-
tion coefficient for single scattering.
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The parameters and variables other than a are assumed to be constant over a small
interval AX. The "average" intensity over the interval AX is then

^X+AX/2

-AX/2 JX —AX/2

This X — integration involving ax can be replaced by the following integral involving yx.

^ «X+ AX/2 i /»X + AX/2

ia = — / i(R, a) d\ = — / F(o-x) dX. (6)
JX—AX/2 —AX/2

1 f FC ^ Pi 1 f ^— / F(ax) d\ = -  TtTay (7)
AX A-ax/2 it Jl 17(77 — 1 )

This substitution converts any solution of the transport equation or its equivalent
for the monochromatic intensity in terms of ax and other variables and parameters into
a new expression for the "average" monochromatic intensity in terms of yx and the
other variables and parameters, i.e., Eq. (5) is replaced by

ia(R, £2) = H(yx, a,x- • • .), (8)

where H (yx, a,x • • ■) is the function obtained from the integration on the right side
of Eq. (7). This integration can be carried out analytically or graphically for a series of
values of X depending on the complexity of F(ax, • • •).

Alternative forms for the integration in terms of the parameter y are

1 fX+iV2 rr iWi 1 f1 F'(*?/"> du 2 f FMv* + dv ™— / b{ffx) ax = - / -17277 -T171 = - /  2 , , (9)
AX Jx-AX/2 TT Jo u (1 — U) T Jo V + 1

The theorem represented by Eq. (7) and the two corollaries represented by Eq. (9)
are established in the following section.

3. Proof of the theorem and corollaries. Any function sectionally continuous in the
interval (0, =°) may be expanded in terms of the normalized Laguerre polynomials [2]

do)
, = 0 v\

where L,{£) is the Laguerre polynomial of order v.

l,® = e{ ̂ (*v£) = (-1)' [r- -f,r1 +Av ~,1)2r2 — + c-dvi] (id

and

ffl>== (12)
Jo vl

On physical grounds F(ax) is a continuous or sectionally continuous function of ax
and, therefore, can be expanded as follows:

F(ax) = Ftfax) = it a"Lu(2af)e (13)

where Fx (2ax) is a function of 2ax obtained from the original function F(ax).
Therefore

■, »X+AX/2 ■ f | ,X+AX/2 ^
jr F(ax) d\ = L,(2ax)e-°* d\>, (14)
AX Jx-AX/2 ,-0 VI IAX JX—AX/2 J
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with

ar = 2 f ® *p)e df. (15)
Jo vl

Since L,(2<jx) is a polynomial of argument 2ax and degree v, L„(2<rx) e~"' can be formed
by summation of the products of multiples of powers of x with the differentials of e~"
with respect to x. For instance,

L0(2ax)e-" = e—, (16)

Li(2<rx)e~°x = (~2<rx +

d (17)= e"" + (2x) ± (e~'x),

L2(2cx)e~" = [{2cx)2 - 4(2crx) + 2]e~",

= 4a2x2e"x - 8axe~" + 2e~",

= (4*2) £s (e~°x) + (8x) £ (e"«) + 2e~'x,

(18)

and in general,
2 ^"-1

p . Vr. (2x)"~1 —dx" 1' dx
L,(2<rx)e~°x = (2x)' (e—) + ^ (2.r)^1 (e"~)

+ ^2!-— (2x)"2 <e~"> +•••+"' e~"> (1Q)

jv-n

- S [fr - »)IIV!(2x) }-
Therefore,

1 «X + AX/2 co v i /7I'-n f 1 /»X + AX/2 ^

i- *■(«) dx = X E rr ,i2 , (2x)-fw T7 e— dX>-iX Jx-ax/2 1.-0 n-o [(y w)!]w! aa: (AX Jx-ax/2 JAX

The interchange of the order of integration and differentiation is allowable since

«X +AX/2

/X—AX/2

(20)

-i /»X + AX/2

ax dx'
AA J X—AX/2

exists by definition.
Now erfc (72)1/2 is the Laplace transform of /(/) [3], where

/«) =
0 ; <<7,
1/2 (21)

ir<(< — 7) X/2 , < > 7,

i.e.,
^ * co 1/2 -xt

«*> W" - ; f (22)
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Substituting t = yt) in the integral, yields

erf. M"--if (23)
From Eqs. (3) and (23)

1 «X +AX/2 i --T»1
e— dX = - i73 dv. (24)

AX A-dx/z x Ji ??(»? — 1)

From Eqs. (20) and (24), interchanging order of integration, differentiation, and sum-
mation, yields

1 /»X+ AX/2 CO V t /7"~n f r00 />~yx1l

-fr F(,<rx) d\ = £ 2 77— mh , (2®)'"" — < —/ ^ dv> (25)AXJx-^/a ^ ^ [(? - n)!fn! U. TV(V - 1)1/2 'J

But, it is evident from Eqs. (13) and (19) that

E £ f, a^n2 . (2x)(eT") = F(7,z). (26)
,-0 „-0 l(" - n)\\n\ dx

Therefore,

l „ if Km) d,5LfW4%J, <27)
and the theorem is proved.

The proof of the corollaries is evident by substituting ?j = l/« and rj = y2 + 1 in
Eq. (27).

4. Discussion. The incorporation of the error function coefficient in the formal
solution of the transport equation immediately permits use of this relatively well-
behaved coefficient in all existing solutions for light scattering, radiant transport, etc.,
subject only to the validity of the Elsasser model. The resulting "average" intensity,
ia, can readily be integrated with respect to wave length for any given source distribution
to find the total radiation over any finite interval of wave length. These procedures are
illustrated in detail for a particular application in Ref. [4]. Attention is being given to
equivalent theorems for other models for band absorption.
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