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HOMOGENEOUS SOLUTIONS IN ELASTIC WAVE PROPAGATION*
BY

JOHN W. MILES
University of California, Los Angeles

Summary. Busemann's method of conical flows is formulated for two-dimensional
elastic wave propagation. The equations of motion are reduced to either Laplace's
equation in two dimensions or the wave equation in one dimension, and solutions then
are obtained with the aid of complex variable or characteristics theory, respectively.
Special attention is paid to that class of problems in which the hyperbolic domains (of
the two-dimensional wave equation) are simple wave zones, in consequence of which the
solutions may be continued into the elliptic domain (of Laplace's equation) without
explicitly posing the boundary conditions on the boundary separating the two domains.
The method is applied to the diffraction of P- and <SF-pulses by a perfectly weak half-
plane.

1. Introduction. The purposes of this paper are(a) an exposition of the use of homo-
geneous solutions1 in problems of two-dimensional, elastic wave propagation and (b) a
complete solution for the transient diffraction of dilatational or vertically polarized
shear waves by a perfectly weak half-plane.

Homogeneous solutions to the wave equation appear to have been discussed originally
by Green [1] and were developed extensively by Bateman [2], but the most powerful
applications were initiated only much later by Busemann [3] in his method of conical
flows. Busemann's essential contribution was the introduction of Chaplygin's trans-
formation [4] to reduce the wave equation to Laplace's equation, thereby permitting
the use of function theory; (we note a striking adumbration of Busemann's work in
Donkin's formula [5]). Busemann's technique has been applied extensively to supersonic
wing problems [6] and to transient diffraction by a half-plane [7, 8] and by a wedge
[9, 10]. We also note that a somewhat earlier reduction of the wave equation in three
dimensions to Laplace's equation in two dimensions was effected by Sobolev [11] through
superposition of plane waves. Sobolev applied his technique to the impulsive loading
of an elastic half-space, but he does not appear to have emphasized either the important
role played by homogeneity or the potential generality.

[Note added in press. It appears that Sobolev may have given a more general treat-
ment in Ch. XII of the 1937 Russian translation (and extension) of P. Frank and R. von
Mises, Differential and integral equations of mathematical physics, a reference cited by
M. M. Fridman, Dokl. Akad. Nauk. SSSR 66, 21-24 (1949)].

We may anticipate a homogeneous solution to a physical problem if either the data
of that problem contain no characteristic length or if the only characteristic length
must be derived from a parameter to which the solution must be proportional. The former
category, in which supersonic flow past a semi-infinite cone provides an example, requires

*Received December 8, 1958. Presented at the Institute of Geophysics Tenth Annual Conference,
University of California, Berkeley, Dec. 13 and 14, 1957. An expanded version of this paper appeared
as Ramo-Wooldridge Report GM-TR-0165-00350.

'A function f(xi , Xi , • • • , x„) is said to be homogeneous of degree m if it may be expressed in the
form x™ f(x2/xi , ■■■ , x„/x,).
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no assumption of linearity, but in the latter category linearization of the boundary
conditions generally is a necessary prerequisite2 (although the differential equation
usually need not be linearized). We also remark that solutions to the wave equation
may be patched together along characteristics and that homogeneous solutions then
may be used over limited regions; the essential requirement is invariance under a scale
transformation of the region in question.

The immediate advantage of homogeneity is that the order of the governing partial
differential equation may be reduced. This advantage proves especially great in those
two-dimensional problems of elastic wave propagation that permit the displacement
potentials for vertically polarized motion or the displacement for horizontally polarized
motion to be posed as homogeneous functions of degree zero, for then we may apply
Chaplygin's transformation directly (as in Sec. 3 below). To be sure, we could apply
the same transformation if the vertically polarized displacements were homogeneous
and of degree zero, but then we should find it necessary to impose appropriate com-
patibility relations (as in the typical conical flow problems, where the velocity com-
ponents are of degree zero and the velocity potential of degree one; see reference [6]).

We consider in Sec. 2 the equations of motion for homogeneous wave functions of
degree zero, but we remark that—insofar as homogeneity of any degree may be assumed—
the restriction to degree zero is not essential; more general results may be constructed
via Duhamel superposition by virtue of the assumed linearity. We then go on, in Sec. 3,
to reduce the wave equations to either Laplace's equation in two dimensions or the wave
equation in one dimension and to construct general solutions with the aid of analytic
function or characteristics theory, respectively.

Having the general formulation, we consider as an example the problem of transient
diffraction by a half-plane when both dilatational and shear waves are present. This
problem also has been solved by de Hoop [12], who formulated it as a Wiener-Hopf
integral equation.3 A closely related problem, the sudden opening of a semi-infinite
crack in a previously uniform tension field, was solved by Maue [13], whose work appeals
to the homogeneity properties discussed herein but culminates in an integral equation
that he solves by the Wiener-Hopf technique. Maue's results could be applied directly
to the normal incidence on a half-plane of two, symmetrically disposed compression
waves characterized by a step discontinuity in normal stress.

[Note added in press. An incomplete solution based on Sobolev's method (l.c.a.), assum-
ing an incident wave proportional to the time-integral of (4.1) below, has been given by
M. M. Fridman, Dokl. Akad. Nauk. SSSR 66, 21-24 (1949). He attempts only to
reduce the problem to quadratures, the completion of which would appear to be rather
difficult].

Other problems to which the present method is applicable include the action of an
impulsive line-load on a semi-infinite solid, for which many previous solutions exist [14],
and the as yet unsolved problem of P- or SF-diffraction by a wedge-shaped cavity4 (the
corresponding SH problem is essentially that solved in references [9] and [10].

2Problems in which the solution is nonlinearly proportional to some input parameter also may be
possible.

"Dr. de Hoop worked on the problem at the Institute of Geophysics, University of California,
Los Angeles in 1956-7, His subsequent completion of the solution and the present work then were carried
out independently.

4This problem is being attacked by one of Professor Knopoff's students.
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Equations of Motion
2.1 The displacements. We consider those (essentially two-dimensional) wave mo-

tions in an isotropic, elastic medium for which the displacement vector u may be derived
according to

u = V* + V X (k*) + kw, (2.1)

where <t> denotes the scalar potential for irrotational displacements (dilatational or
P-waves) in a plane (the x, y- or r, 0-plane) normal to the unit vector k (along the 2-axis),
ki/' the vector potential for solenoidal displacements in this same plane (vertically
polarized shear or SV-waves), and w a transverse displacement (horizontally polarized
shear or SH-waves)5. It is known that <p, 4*, and w satisfy the wave equations [15]

clV2(j} = <t>u , clV2\p = \f/t, , clV2w — wlt , (2.2a, b, c)

where c, and c2 denote the velocities of dilatational and shear waves, respectively, and
are given by

el = (X + 2n)/p and cl = n/p (2.3a, b)

in terms of Lame's constants X and n and the density p. We also introduce the speed
ratio 7 and the critical angle 0C according to

7 = cos 6C = c2/c, = [M/(X + 2m)]1/2. (2.4)

We now assume the boundary conditions to be such that <b, xf/, and w must be homo-
geneous functions of degree zero in the polar coordinates r and d and the time t. We
choose as our dimensionless, homogeneous coordinates the angle 6 and either

£ = cxt/r or ij = c2t/r, (2.5a, b)

in terms of which

<t> = <£(£> o), ^ = Hv, o), w = u>(jj, e). (2.6a, b, c)

The radial (u) and tangential (v) components of displacement then are found to be
[note that £{d/d£) = r]{d/dt\) = — r(d/dr)]

u = + ie) and v = r~'(<#>« + (2.7a, b)

where subscripts denote differentiation (as they do everywhere in this paper except in
the following section, and, throughout, on the stress components r,-,).

2.2. The stresses. The Cartesian stress tensor is given by

r„-XS„Vu + „(g + |l), (2.8)

where u{ denotes a Cartesian component of the displacement with i = 1, 2, 3, 5,-, denotes

6We could achieve a more formal symmetry by deriving w from a second vector potential, but this
would be unnecessarily circuitous.
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the Kronecker delta, and the usual summation convention is implied. Transforming
to cyclindrical polar coordinates and introducing £ and rj from (2.5a, b), we obtain

t„ = 2(\ + n)r~2<t>(i — Tee , (2.9a)

Ten = txr'2 {[(y~2 — 2£2)0l]f + 2(77^),«{, (2.9b)

r„ = Xr"20{j , (2.9c)

Tr« = nr-2{ -2(fc)t, + [(1 - 2„S)*„M, (2.9d)

Tr, = —nr'^wz , and r6z = #ir_1w9 . (2.9e, f)

We shall be interested especially in Tee and rr9 , which we also may express in the rather
more symmetric forms

Tee = m^_2_^[(1 - 2?;f<£, + 2t)(2.10a)

and

Tr» = \ir~2 [ — 2?T<t>e + (1 — 2j72)^,]. (2.10b)dv
2.3. The boundary conditions. We shall consider only boundaries that are either

completely free (weak boundary) or completely constrained (rigid boundary). The corre-
sponding boundary conditions at any point, where the components of the normal are
n< , are either

Ti ,7i,- = 0 (weak) (2.11a)

or

U; = 0 (irigid) (2.11b)

provided that the curvature of the boundary is finite. The boundary conditions at a
sharp edge may be inferred from the requirement that the strain energy in the neighbor-
hood of the edge remain bounded, which implies

Tij-n,- = 0(r~l/2), r —» 0 (2.12a)

or, equivalently,

Ui = 0(rI/a), r —> 0. (2.12b)

Transformation of the Wave Equation

3.1. Wave equation in homogeneous variables. The end result of expressing V2<t> in
r and 8 in (2.2a) and then posing the homogeneous solution (2.6a) is

(£* ~ + 4>ee = 0. (3.1)

We may obtain the corresponding equations for \p and w simply by replacing £ by 17.
We remark that (3.1) is elliptic in J > 1 and hyperbolic in £ < 1. If we regard £_1

and 6 as polar coordinates (thereby referring all lengths to Cit), the elliptic and hyperbolic
domains correspond to the interior (£ > 1) and exterior (£ < 1) of the unit circle (£ = 1).

The circle £ = 1 or r = c,t evidently represents a singular wave front, across which
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we may expect discontinuities in the ^-derivatives of sufficiently high order and in the
neighborhood of which the solutions to (3.1) cannot be uniformly valid. Fortunately, this
neighborhood proves to be extremely small for elastic solids, and we shall rest content
with the statement that the solutions to (3.1) must be continuous across | = 1, while their
first ^-derivatives may be infinite like (£ — 1)~1/2 as £ —> 1 + . We also remark that the
second derivatives of these solutions may be discontinuous across the characteristics
of (3.1) in its hyperbolic domain.

3.2. The Chaplygin transformation. We may reduce (3.1) to Laplace's equation

<t>ee + <t>t, = 0 (3.2a)

for points inside the unit circle through Chaplygin's transformation

s = — cosh_1£ = log ft - (|2 - 1)1/2]. (3.3a)

Similarly, we obtain the one-dimensional wave equation

<t>ee — 0<r<r = o, (3.2b)

with

<t = cos"1 £. (3.3b)

It follows that we may pose the solution for <t> in the complementary forms

<t> = RlF(a), £ > 1 (3.4a)

with

a = 8 + i cosh"1 £, (3.5a)

where F(a) is an analytic function of the complex variable a; or

<t> = F+(a+) + F_(a_), (3.4b)

with

a. = 6 ± cos-1 £, (3.5b)

where F. are arbitrary functions of the characteristic variables a* .

-i „
i cosh c

(f >1)

0=0 fi=27r
i = \

Fig. 1. The a-plane.

We may interpret the solution (3.4a) in terms of the mapping of the interior of the
unit circle into the interior of a semi-infinite rectangle in the a-plane, as shown in Fig.
1 (we distinguish the planes 0 = 0 and 6 = 2ir in anticipation of the half-plane diffraction
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problem to be treated in Sec. 4; if a finite sector of the unit circle were excluded by the
physical boundaries, as in the problem of diffraction by a wedge, we could subject a to
further transformations). We also find it convenient—especially in discussing singu-
larities—to introduce the transformation

z = cos a = £ cos 6 — i(£2 — 1)I/2 sin 6. (3.6)

The interior of the unit circle then maps on the exterior of the cut from — 1 to + 1, as
shown in Fig. 2.

— i2 —I sin 9

C = l+ iO fl=2ir

|C=I-iO +| 9=0
Fig. 2. The z-plane.

■ £ cos 9

We may construct the characteristics of (3.5b) by drawing tangents to the unit
circle in the clockwise (<?+) and counterclockwise (a_) directions, as shown in Fig. 3.
Any point in the hyperbolic domain (£ < 1) then may be

9 + cos ' £=a+

Fia. 3. Characteristics generated from the unit circle.

located by the intersection of two characteristics of opposite (±) families, and we may
designate the coordinates of this point as (a+ , a_); if a+ = a_ the point is on the unit
circle (| = 1), while if a+ = a_ ± x the point is at infinity (J = 0).

3.3. Application to shear waves. We may apply the results of Sees. 3.1 and 3.2
equally to <p and w if we replace £ by 77; thus,

t = It IG(P) (3.7)
with

/? = d + i cosh-1 »/, i] > 1 (3.8a)
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or
/St = 6 ± cos-1 v, t] < 1, (3.8b)

and similarly for w.
3.4. Simple wave zones. A simple wave zone is a region in which the solution to a

hyperbolic equation depends on only one of the characteristic variables. The simple
wave zones that we encounter in the present study are bounded by a characteristic, along
which they are adjacent to a region of zero disturbance6; by an arc of the unit circle,
along which they are adjacent to an elliptic region; and by a boundary on which appropri-
ate conditions are prescribed, as shown in Fig. 4.

We infer from the foregoing definition and from the required continuity of <fie =
Rl F'(a) that the solutions given by (3.4a) may be continued into a simple wave zone
simply by continuing a as the variable (either a+ or a_) that is constant along the
characteristic boundary; in so doing, we may drop the + or — subscript. We also may
continue implicitly the prescribed boundary condition along the single family of character-
istics to the unit circle and thereby seek the solutions in the elliptic and hyperbolic

6+cosH£ = a+

0+cos"1^ a^a+

Fig. 4. Simple wave zone bounded by an a+ characteristic, an arc of the unit circle (0 < 6 < <*+), and
a line (0 = 0) of specified boundary condition.

domains of (3.1) simultaneously (whereas in a more general configuration it would be
necessary to obtain the solution first in the hyperbolic domains in order to specify
boundary conditions completely around the boundary of the elliptic domain).

We consider, as a particular example, a dilatational disturbance originating at r = 0
and t = 0 and moving out along a free boundary d = 0. In order to satisfy the boundary
conditions there, shear waves generally must be excited by the dilatational wave front;
in accordance with Huygens' principle, each of these may be regarded as a cylindrical
wave having its center at r = c,t and 0=0 and having a radius c2 (t — t),
where 0 < r < t. The envelope of these waves then consists of that portion of
the characteristic 6 + cos-1 r) = 6C intercepted between the wave front r = c2t and the
free boundary, as shown in Fig. 5. Such envelopes (which also arise in problems, elastic

Fig. 5. Simple wave zone for shear waves excited by dilatational wave front moving along 8 — 0.

6It follows from characteristics theory that a simple wave zone is the only type of hyperbolic region
that may adjoin a region of zero (or uniform) disturbance.
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or acoustic, where two media of different wave speeds are contiguous) sometimes have
been designated as head waves; however, following the terminology of characteristics
theory in supersonic flow [16], we shall designate them as Mach lines or Mach envelopes.

3.5. Transformation of the displacements. We consider only the radial and
tangential displacements u and v; the transverse displacement w is given directly by a
solution of the type (3.7) and requires no further transformation. Substituting (3.4a)
and (3.7) in (2.7a, b), we obtain

u = r-'Rli-m2 - l)"1/2F'(a) + G'(0)] (3.9a)

and
v = r-'RllF'fa) + iv(v ~ iy1/2G'(f3)] (3.9b)

for points in the elliptic domains; if a is continued as a. we have only to replace
— 1)_1/2 by =F (1 — £2)~1/2 and similarly for /3.

The results (3.9a, b) may be continued into simple wave zones, but we shall find it
more convenient to utilize the fact that the P- and SH-wave displacements must be
normal and parallel to their respective characteristics (see Fig. 6). Designating these
displacements as u and w" (v is measured positive in the direction of increasing 6 for
both ± characteristics), we find

u" = ±(r2 - clt2y1/2<t>a , a = 6 ± cos-1 { (3.10a)

and
v& = T(r2 - clf)-1/2$e , 0 = d ± cos"1 77. (3.10b)

We emphasize that the total displacements generally contain both P- and SH-com-
ponents and that the hyperbolic domains of these components do not coincide.

3.6. Solution procedure. The foregoing developments suggest the following, general
procedure for the solution of those problems that admit homogeneous functions of
degree zero and in which the hyperbolic domains may be identified as simple wave zones.

a. Pose the solutions in the form of (3.4a) and (3.7). We shall find it expedient, in
so doing, to separate out prescribed components, such as incident waves [e.g., (4.2a, b)].

b. Convert the initial conditions to conditions on the wave fronts [e.g., (4.4a, b)].
c. Calculate the displacements and/or stresses in forms similar to (3.9a, b) and

impose the prescribed boundary conditions [e.g., (4.6a, b)].
d. Express the coordinates that vary on the boundaries (£ and/or r; in Sec. 4, where

the boundaries are prescribed by fixed 0) in terms of a and /3 there (e.g., J = cos a on
6 = 0) and substitute in the boundary conditions to obtain equations that contain only a
and/or f3.

e. Express the prescribed functions (representing applied loads, displacements, or
incident waves) in terms of a or j3 on the boundaries. We shall find (Appendix A) that
the resulting expressions are characterized essentially by their singularities (generally
poles) but contain arbitrary functions.

f. Determine the relation between a and /3 on the boundaries (e.g., cos /3 = 7 cos a
on 8 = 0) and eliminate (at least implicitly) either a or /? from the boundary conditions.
We remark that either the same or different relations between a and /3 may be obtained
on different boundaries; thus, we shall find only a single relation in Sec. 4, but two
different relations would be obtained in the problems of P- and SF-wave diffraction
by a wedge.
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Fig. 6. The velocities in the hyperbolic domains.

g. Determine functions that satisfy the boundary conditions. We find that, in the
problems to be considered subsequently, only the first derivatives of F and G enter the
boundary conditions; accordingly, we may continue these conditions into either the a or
13 domains (see f above) and solve for F' and G'. If the form of the boundary conditions
is different on different boundaries the resulting expressions for F' and G' must be de-
veloped as superpositions of the algebraic solution of the different conditions.

h. The solutions so obtained will contain the arbitrary functions introduced in e,
and we must determine them in such a way that the final solutions satisfy the initial
conditions, exhibit singularities on the physical boundaries only as physically appropriate
(e.g., stress may be infinite like r~w2 at an edge), and are completely analytic in the
interior of their elliptic domains. We find that the first two of these conditions may be
met in a relatively straightforward manner (indeed, the initial conditions are likely to
be satisfied automatically once the wave front geometry is determined). We also find
that solutions satisfying the third condition of analyticity often may be obtained
by inspection, but in Sec. 4 the removal of spurious singularities introduces appreciably
greater complexity into the analysis. We find that the undesired singularities may be
factored out through Cauchy integral-theorem representations, as in the solution of
Wiener-Hopf integral equations.

Diffraction by Half-Plane

4.1. Formulation. We consider (see Fig. 7) the P-wave

<t>' = H[£ — cos (0 — SO] (4.1)
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to be incident on the weak half-plane 0 = 0, 2r; H denotes Heaviside's step function
[H(x) = 0,1 as x <, > 0] and 61 the angle of incidence. It would be equally simple, in
principle, to provide for the simultaneous incidence of an SF-wave; this would almost
double the length of the subsequent equations, however, and we shall rest content with
sketching in the results by analogy (see Sec. 4.5).

Fig. 7. Diffraction of P-wave by half-plane.

Our problem evidently admits no characteristic length other than that defined by
the amplitude of the incident wave (which we take to be unity); accordingly, we may
pose solutions in the form

<t> = <£' + Rl F(a) and \p = Rl G(0). (4.2a, b)
We remark that F(a) and G(B) will include specularly reflected P- and <SF-waves emerg-
ing at the angles 2t — 0i and 2ir — 02 , respectively, where

cos 02 = y cos 0i . (4.3a)

If 0 < 0i < 7r/ 2 constitutes the entire disturbance for t < 0, but if 7t/2 < 0X < ir
these specular reflections, as given by (4.24b, c) below, must be included for t < 0 as
well as t > 0. We also remark that (4.3a) may be generalized to read

cos /3 = 7 cos a, 6 = 0, 2ir, (4.3b)

since jj = on the half-plane; (4.3b) then yields (4.3a) at the point of intersection of
the plane-wave fronts (see Fig. 7).

Turning to the scattered waves, we first note that, since the P-wave disturbance from
the edge at r = 0 originates at t = 0 and travels outward with speed c, , the region of
influence of this edge consists of the interior of the circle £ = 1, which we then may
identify as the elliptic domain for F(a). Similarly, the elliptic domain for G(/3) is the
interior of the circle 17 = 1; but, in accordance with the discussion of Sec. 3.4, the SF-
wave region of non-specular scattering also comprises the simple wave zones bounded
by the Mach envelopes 6 + cos-1 17 = 6e and 6 — cos'17] = 2t — 6e . Summing up, we
designate the various zones according to (see Fig. 7):

I: incident wave zone,
IF : P-wave zone of specular reflection,
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II2 : <SF-wave zone of specular reflection,
III: shadow zone,
IYi : P-wave scattering zone (£ > 1),
IV2 : SF-wave scattering zone;

this last zone comprises both elliptic and hyperbolic domains.
The initial conditions dictate: (a) <£ = $* on that portion of the P-wave scattering

circle £ = 1 intercepted between the incident wave front and the specularly reflected
P-wave front and (b) \p = 0 on the Mach envelope 0 + cos-1 ij = 6C and on that portion
of the SF-wave scattering circle intercepted between this Mach envelope and the
specularly reflected /SF-wave front (note that 02 > 0C for all di). Imposing these con-
ditions on (4.2a, b), we obtain

Rl F(0) = 0, e1 < e < 2T - e, (4.4a)
and

Rl G(e) = 0, 6e < 0 < 2t - 02 , (4.4b)

where the end-point 0 = 6r comprises the aforementioned Mach envelope.
The boundary conditions require rr6 and t99 to vanish on the half-plane; integrating

(2.10a, b) from rj = 0 (i.e., either / = 0 or r = °o) yields

(1 - 2,2)0, + 2vh = 0 (4.5a)
and

-2#, + (1 - 2^)<A, = 0, 0 = 0, 2t. (4.5b)

Substituting (4.2a, b) in (4.5a, b), we obtain

T_1(l - 2r?){&{ii - cos 0,) + Rl[i(? - l)~1/2F'(a)]} + 2tr,Rl[G'(J3)] = 0 (4.6a)

and

— 2ij{ —sin M(E ~ cos 00 + Rl[F'(a)]} + (1 - 2t?2) (4.6b)
■Rl[i(r,2 - l)-1/2(?'03)] = 0, 0 = 0, 2x.

4.2. Solution for F' and G'. We now rewrite (4.6a,b) in terms of a and /? and repre-
sent the delta functions as in Appendix A to obtain

Rl[csc a cos 2f3F'(a) + 2y cos j3G'(0)] = Rl[A(cos a)/ttr(cos a — cos 0J], (4.7a)

Rl[ — 2 cos pF'(a) + csc /3 cos 2/3(?'(/3)] = — Rl[B(cos 0)/iir(cos a — cos 0i)], (4.7b)

0
A (cos a) = ±cos202 , a = 1 , (4.8a)

2t — di

B{cos (3) = ±7 sin 20j , (3 = 02 , (4.8b)
2 7T — 02

and

Im A(£) = Im B(ri) = 0. (4.8c)
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Our choice of arguments in A and B is dictated merely by convenience; in this connec-
tion, we note that /3 = is equivalent to a = di [see (4.3a, b)] in (4.7a, b).

We may continue (4.7a, b) into either the a- or /3-domain by eliminating either
/3 or a, respectively, through (4.3b) and removing the Rl operators [i.e., the equations
so obtained yield solutions that satisfy the boundary conditions (4.3b) and (4.7a, b)].
Solving the resulting equations, we obtain

and

where

F'{a) = sin a(A cos 2/3 + yB sin 2/3)/iV(cos a — cos 6,)D(y cos a) (4.9a)

G'(/3) = sin P(yA sin 2a — B cos 2#)/tx(cos a — cos 8i)D(cos /3), (4.9b)

D = (2y2 cos2 a — l)2 + 4y3 sin a cos2 a(l — y2 cos2 a)* (4.9c)

= cos2 2/3 + 4 sin (3 cos2 /3(y2 — cos2 /3)1/2, (4.9d)

with cos j3 and cos a defined by (4.3b) in (4.9a) and (4.9b), respectively.
The denominator D(y cos a), as given by (4.9c), has branch points at cos a = ±1/7

and (at least for normal values of y) zeros at cos a = ± £R , where

= Ci/cjj , (4.10a)

and Cfl denotes the wave speed for Eayleigh surface waves. Similarly, D{cos 0) has
branch points at /3 = 6C and t — dc (cos /3 = ± cos 9C) and zeros at cos /3 = dr ,
where

= c2/cs . (4.10b)

We choose the branch cuts so that they do not enter the domains of regularity, £ > 1
and 17 > 1, and define the radicals to be positive and real for cos a = 0 and cos 8 = 0.

We find it convenient, in the subsequent determination of A and B, to introduce the
notation

Zi = cos a and z2 = cos/3, (4.11a, b)

and to examine the singularities of F and G in Zy and ^-planes. The elliptic domains
map onto the z,- and z2-planes cut from — 1 to + 00 (the cuts from — 1 to 1 correspond
to £ = 1 and ri = 1, while the cuts from + 1 to + °° correspond to the half-plane separat-
ing 0 = 0 and 6 = 2ir), and we require

dF = _F^a) ^)(27^ - 1) + 2y2fi(yz1)z1(l - T2s2)'/2
dzx sin a (—iir)(zi — cos d^Diyz^ '

and
dG _ G'W) _ 2A(z2/y)z2(y2 - z2)1/2 - yB(z2)(2z\ - 1)
dz2 sin /3 ( — iir)(z2 — cos 62)D(z2)

to be regular in these cut planes. We also require

dF/dz, = 0(z71/2), Z\ • > 00 (4.12c)

and
dG/dz2 = 0(z21/2), z2 > 00 (4.12d)
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in order to meet the edge singularity requirements of (2.12), which imply (see Appendix
B) f"(«), G'08) = 0(r~1/2), r —> 0.

The requirement that dF/dZi be regular in the s^plane cut from — 1 to + <*> implies
that A(zi) and B{yzx) must cancel the singularities exhibited by D{yZi) at z, = — 1/y
and Zi = — [see (4.9c) and discussion following]; if we satisfy this requirement, it
will follow that A{z2/y) and B(z2) will cancel the singularities of D(z2) at z2 = — 1 and
z2 — — Vr , although only the latter cancellation may be posed as an a priori require-
ment (indeed, dG/dz2 still will possess a branch point at z2 = — 1). We can achieve
these cancellations by factoring D according to

D(z) = D^(z)DJz), (4.13)

such that D+(z) have singularities only in Rlz ^ 0.
At this point, our analysis parallels that of both de Hoop [12] and Maue [13], for

D(z) enters the transform kernel of the Wiener-Hopf integral equation and must be
factored in the same way; we obtain7

£.(*) = [2(1 - t2)]1/2(^ =F z)/L{± z), (4.14)

where

£«-ex»{;/,'r^4 (4'15)
and

/\ rva--t2)i/2i „. .X  x{z) — tan _ i^2 J' ^ 2 (4-16)

is the phase angle of D(z) for points on the bottom of the cut from f = 0 to J" = y. The
path of integration in (4.15) must be indented over or under z if z tends to the real axis
interval (7, 1) from Im 2 < 0 or > 0, respectively, and we then may rewrite (4.15)
according to

Kcos 0) - Lc(cos 2i » I | 2i, (4.17)

where Lc denotes L based on the Cauchy principal value of the integral in (4.15)—viz.,

Numerical values of x(z) and L(z) have been calculated8 for 7 = 3~I/2 (X = ju) and
are plotted in Figs. 8 and 9. We remark that these results have application to other
problems in elastic wave propagation (e.g., Maue's results, [13]).

Having the result (4.13), we can cancel the undesired singularities in D by including
the factors D^(yzx) and D.{z2) in A and B, respectively. Then, since D-(yZy) takes the
same values at a = and 2t — 0X (zi = cos 61) and is 0(zx) at infinity, we require an
additional factor in A that takes opposite values on a = 6X and 2ir — 0! in consequence
of (4.8a), is 0(zi~1/2) in consequence of (4.12c), and is regular in the cut Zi-plane; we

'The details of the factorization may be found in Ref. [13]. The results were derived independently
by the writer and therefore provide a check on those of Refs. [12] and [13].

8I am indebted to Professor Knopoff for aid with these and the subsequent calculations.
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Fig. 8. (2/t)x(x), as given by (4.16) for y = 3~1/2.

can satisfy these requirements with the factor (1 + z1)_1/2. Similar requirements apply
to B, but B(yzi) also must remove the branch point at zx = — I/7 in the numerator of
dF/dzi ; we can satisfy all of these requirements with the factor (1 + z2)~1/2. Introducing
the normalization factors dictated by (4.8a, b), we conclude that

.A(cos a) = cos (0i/2) cos (202) sec (a/2)D-(y cos a)/D_(cos 02) (4.19a)

and

B{cos 0) = 7 sin (20j) cos (02/2) sec (/3/2)Z)_(cos /3)/D_(cos 02). (4.19b)

Substituting (4.19a, b) in (4.9a, b) or (4.12a, b), we obtain the final results

p,, . _ jCn sin (a/2)(2y2 cos2 a — 1) + yC2i sin (2a)[(l — 7 cos a)/2]1/2}L(y cos a)
iiry{£R — cos a)(cos a — cos dx) '

(4.20a)

= {Cn sin (2/3) [7(7 - cos ff)/2]1/!! - C21 sin Q3/2) cos (2ff)}L(cos <3) w
— cos /?)(cos /? — cos 02) '

Cn = cos (0i/2) cos (202)Co(cos 02), (4.21a)

C21 = 72sin (20,) cos (02/2)Co(cos 02), (4.21b)

and

C0(cos 02) = L(—cos 02)/(l — 72)(vr + cos 02), (4.21c)

where L is defined by (4.15), a by (3.5), /3 by (3.8), 7 by (2.4), and rjR by (4.10a, b),
and 02 by (4.3a). We observe that Cu and C21 are real for all dx and that Cn =
— (1 — 72)-1/2 and C2i = 0 for normal incidence (0! = t/2). We also remark that the
second (1) subscripts on Cn and C21 identify the excitation as a P-wave and that the
results (4.20a, b) agree with those obtained by de Hoop [12].
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Fig. 9. The function L(x), as given by (4.15) for —1 < x < y and by (4.18) fory < x < 1 with y = 3-1/2.

4.3. The scattered wave fronts. We consider first the plane wave zones, where the
solutions may be obtained directly from (4.8a, b) and (4.9a, b). Outside of the P-wave
circle 1 = 1, both a and f3 are real, and the only contributions to Rl F'(a) and Rl G'(j3)
must come from the poles at a. = d1 , a = 2ir — 0i , and /3 = 2t — 02 (we remark that
the numerator of G' vanishes at /3 = d2, thereby cancelling the corresponding zero in the
denominator); these poles yield

Rl F'icx) = sin cos 6 — (1 — £2)1/2 sin 6 — cos 0J in III, (4.22a)

Rl F'{a) = Rn sin 0a5[£ cos 6 + (1 — £2)1/2 sin 8 — cos 6X] in IIj , (4.22b)

and

where
Rl G'(J3) = R2i sin 02d[ri cos 6 + (1 — ti ) sin 9 — cos 02] in II2 , (4.22c)

Rn = (—cos2 202 + 7 sin 20j sin 202)/Z)(cos 02), (4.23a)

R21 = 272sin2cos 202/D(cos 02), (4.23b)
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and

D(cos 02) = cos2 202 + y2 sin 20X sin 202 ■ (4.23c)

Integrating (4.22a, b, c) and modifying the argument of the resulting step functions
(only the locus across which this argument changes sign being important), we obtain
the scattered waves

<(>' = Rl F(a) = — H[0, — (0 + cos-1 J)] in III, (4.24a)

4>' = Rl F(a) = RnH[(6 — cos-1 £) — (2x — 00] in II! , (4.24b)
and

\p = Rl G(J3) = R21H[(d — cos'1 rj) — (2x — 02)] in II2 . (4.24c)

We have, then, the anticipated results that 0' cancels </>' in the shadow zone (III), and
that <j)s and ^ in the zones of specular reflection (II, ,2) agree with the known results [17]
for reflection from an infinite, plane boundary.

Turning to the P-wave front, £ = 1 — , we find that /'"(a) is imaginary there and
yields only a radial velocity [see (3.9a, b)] that tends to infinity lik'e (£2 — 1)-1/2 and
then drops discontinuously to zero (except at 0 = 0! and 2x — 0i) for £ = 1+. Setting
£ = Cit/r in the (£2 — 1)~1/2 factor and £ = 1 elsewhere in the first term in (3.9a), we
obtain

u —> (cjf — r2)"1/2/„(0), r —> cj—, (4.25a)

where

/„(0) = Rl[-iF'{6)]. (4.25b)
We may calculate the angular distribution function directly from (4.20a), since iF'(d) is
real; the result evidently will be singular at 0! and 2t — di in consequence of the plane
waves of (4.22a, b). In the special case of normal incidence we obtain

i (ff\ - sin (0/2)(l - 2-y2 cos2 0)L(y cos 0) _
Ue) ~ ~ x7(l - 72)I/2 cos 0fe - cos 0) ' 01 ~ T/2' (4"26)

We find a rather more complicated behavior at the 57-wave front (rj = 1) in conse-
quence of the simple wave zones in r > c2t. We obtain for the (»SF-contribution to the)
tangential velocity just inside the semi-circular wave front

v -> (c2i2 - r2)~1/2/21(0), r = c2t~, (4.27a)

where

UM) = Rl[iG'(e)], (4.27b)
but this component vanishes on r = c2t + only for 0C < 0 < 2x — dc . The remaining
intervals are in the simple wave zones, where (3.10b) yields

v0 = (r2 — clt2y1/2g21(9 ± cos-1 v), (4.28a)

where

„,(«) - =FBimm, 2r 1 t (4.28b)
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We then ma,y obtain v on r = c2t + by setting cos-1 rj = 0 in (4.28a), but we emphasize
that the resulting approximation is not uniformly valid in the neighborhoods of /S = dc
and 2t — dc , where G' vanishes like (cos /3 — cos dc)1/2 in consequence of the boundary
condition (4.4b). We may calculate /2J and g2i directly from (4.20b), making allowance
for the fact that L (cos 0) is real only for 6C < 6 < 2t — 6e; in the special case of normal
incidence we obtain

/zi(0) = —h21(6)L(cos 6), 6C < d < 2-ir — 9C , (4.29a)

= —h21(0)Lc(cos 0) sin [x(cos 0)],

0 < 6 < dc or 2t - dc < 6 < 2tt, 6, = ir/2, (4.29b)

\Jt>♦ *i
6.0

-6.0
180° 150° 120° 90° 60° 30° 0°

e
Fig. 10. The distribution of radial velocity along the P-wave circle (r = t —) resulting from normal

incidence of a P-wave pulse; see (4.25a, b) and (4.26) with y = 3-1/2. The insert is a polar plot.
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where

and

(0) _ I ^_2lL V7" sin 0 [ cos 0 — y
7 / (vb — cos 0)

OA

0.2
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~i r-

6= cos ' (I//3)

f2l '21
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9

(4.29c)

02i(0) = h21(6)Lc(cos 0) cos [x(cos 0)], 0, = v/2. (4.30)

'0=COS~'(l//3)

Fig. 11. The distribution of the tangential velocity along the S-wave circle resulting from the normal
incidence of a P-wave pulse; see (4.27)-(4.30) with y = 3~"2. The insert is a polar plot.

The numerical values of /u(0), and g2i(0), as given by (4.26), (4.29), and
(4.30) with 7 = 3~1/2, are plotted in Figs. 10 and 11. We emphasize that the discontinuity
in /u at 0 = 0! = 7t/2 is a direct consequence of that in </>*.

4.4. Surface displacements. We may simplify the expressions for the surface dis-
placements by introducing (4.3b) in (3.9a, b) to obtain

u = r~JRl{ cot aF'ia) + G'{0)} (4.31a)
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and

v = r~1Rl{F'(a) - cot 0G'(0)}, 0 = 0, 2tr. (4.31b)

Substituting (4.20a, b) in (4.31a, b), we obtain

_ 7?J[(y/2)Cu sec (a/2) cos (2/3 - a) + C2l sin (fl/2)]L(cos 8)\ . ,
M \ inrivR ~ cos /3)(cos /3 — cos 02) J

and

y = sin (q/2) + (t/2)C;i sec (ff/2) cos (2/3 - a)]L(cos /3)\ g
\ wr{r)R — cos /3)(cos /3 — cos 02) J

We may reduce (4.32a, b) further if r < c2t, for then the first and second terms in
the numerator of (4.32a) are real and imaginary, respectively, and conversely for (4.32b).
The real terms in the numerators make no contributions to the displacements except
at the surface wave pole, where they yield delta functions. Noting that

7 cos (2/3 — a) = cos 2/3/2 cos 0, v = Vr (4.33)

in virtue of the evanescence of D(r]R), we obtain

C»(2y% - l)L(r/R)b(cRt - r) C2,r1/2M ~ r)W2L(c2t/r)
23/2(l + £rY/2Vr(vr ~ cos 02) 7t21/2tlR(c2t - r cos 02)(cRt - r) (4.34a)

and

C21(2yl - 1 )L(VR)8(cRt - r) Cnr1/2(Cl< - r)U2L(c2t/r)
23/2(l + VrY/2vI(vr ~ cos d2) t2W2Uc2t - r cos d2)(cRt - r) '

0 = 2°, r < c2t.

(4.34b)

4.5. Incident SV-wave. We now assume an incident tSF-wave in place of the incident
P-wave of (4.1). Replacing (4.1) and (4.2a, b) by

<t> = Rl F(a) and \p = H[rj — cos (9 — 02)] + Rl G(B), (4.35)

imposing the boundary conditions (4.5a, b), and then proceeding as in (4.6)-(4.20),
we obtain solutions identical with (4.20a, b) if Cu and C21 therein are replaced by

C12 = cos (0i/2) sin (2 02)CO and C22 = — cos (02/2) cos (202)CO . (4.36a, b)

We emphasize that, although 0! and 02 still are related by (4.3a), they now have
somewhat different meanings—viz., 02 is the angle of incidence and has an ad-
missible range (0, tt/2),9 while 0X , formally defined as the angle of reflection for the
P-wave, can be real only if 02 lies in (9e, 7t/2). If 02 does lie in this interval the wave-front
geometry differs from that of Fig. 7 only in that the incident wave zone (I) and the shadow

9No physical significance can be attached to ir/2 < 62 < t, for the incident SF-wave then would
be preceded by a P-wave for all t < 0, and non-plane, scattered waves also would exist for all t < 0.
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zone (III2 , say) will be bounded by those parts of /3_ = 2tt — d2 and /3+ = d2—rather
than a- = 2ir — 0, and a+ = 0i—lying outside of the P-wave circle (£ = 1). We then find

V = Rl G{/3) = [02 - (0 + cos-1 9?)] in III2 , (4.37a)

4> = Rl F(a) = i?i2#[(0 — cos-1 £) — (2ir — 0X)] in IIx , (4.37b)

\p' = Rl (r(|3) = R22HK8 — cos-1 77) — (2% — 02)] in II2 , (4.37c)

R12 = —2 sin 2 02 cos 202/Z)(cos 02), (4.38a)

and

R22 = Rn , 6C < d2 < t/2, (4.38b)

where Bu and D are given by (4.23a, c) for given 0li2 . The results (4.37b, c) agree with
those for reflection from an infinite, plane boundary [18].

If 02 lies in the interval (0, 6C) the zones of specular reflection no longer exist. The
angle 81 then is complex, cos 6^ is real but greater than unity, and the pole at a — 2x — 0,
(F' remains regular at a = 0J lies in the P-wave circle on the illuminated side (0 = 2ir)
of the half-plane, where it represents a surface wave moving with the dilatational wave
speed Ci . The poles at /3 = 02 and 2w — 02 lie inside the simple wave zones bounded bv
/3 = 0C and = 2ir — 6C , repectively, and represent singular components of the complete
disturbance there, although we remark that the pole at /3 = 02 just cancels the incident
wave in the angular interval (0, 02).

f 12
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9
Fig. 12. The distribution of radial velocity on the P-wave circle (r = Ci I—) resulting from normal

incidence of an SF-wave pulse; see (4.39) with 7 = 3~I/S.
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Turning to the non-plane wave fronts, the results (4.25), (4.27), and (4.28) remain
valid if F' and G' are calculated on the basis of (4.36a, b); we may distinguish the results
by writing /12 , f22 , and g22 in place of /u , f2i , and g2l . In the special case of normal
incidence we obtain

where

j / n\ 1 ( 2 Y/2 sin - T COS e)l/2L(y cos 0) ir . .
Ue) ~ \T^?J (fc - cos 0) ' *2 = 2 ' (4"39)

(4.40a)

7 / (£* — cos 0)

UM = —h22(8)L(cos 0), dc < 6 < 2ir — dc ,

= —h22{6)Lc{cos 0) cos [x(cos 0)],

0 < 0 < 6C or 2tt - 6C < 0 < 2ir, 02 = tt/2, (4.40b)

, , . 1 sin (0/2) cos 20 . .
^22(0) — /-1 2\i/2 n/ j (4.40c)ir(l — 7) cos 6{t]b — cos 0)

-4

1 22

e = cos"1 (i//i)

22

?22

-6
OOOOO

180 135 90 45 0
e

Fig. 13. The distribution of tangential velocity on the S-wave circle resulting from normal incidence
of an SF-wave pulse; see (4.40) and (4.41) with y = 3~1/2.
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and

?22(0) = —h22(0)Lc(cos 0) sin [x(cos 0)], 02 = V2- (4.41)

The numerical values of /i2(0), 122(6), and <722(0) are plotted in Figs. 12 and 13.
4.6. Rigid half-plane. Assuming an incident P-wave and solutions in the form of

(4.2a, b), we find that the requirement that u and v, as given by (2.7a, b) and (3.9a, b),
vanish on the half-plane yields [see (4.7a, b)]

Rl{cot aF'(a) + C?'(/3)} = cos d^^cosa — cos 00, (4.42a)

and

Rl{F'(a) — cot jSG'OS)} = sin 015(cosa — cos 0j), 0 = 0, 2ir. (4.42b)

These equations may be solved as in (4.7)-(4.20), but the results are of rather limited
interest, and we note here only that the counterpart of D is

D = 7 COS (a — P) = zl + (1 - zl)U2(y2 - ziy/2, (4.43)

which has no zeros in the cut plane (s).

Appendix A

Representation of S(x). We require/(z), z = x + iy, such that

Rlj(z) = S(x), y = 0±. (A.l)

Noting that

5(x) = ±i lim ( V 2), (A.2)
7T „^o+ \X + y J

we find that (A.l) is satisfied by

f(z) = a(z)/iirz, (A.3a)

where a(z) has no other poles on the real axis and satisfies

Im a(x) — 0, (A .3b)

and

a(x ± iO) = Tl. (A.3c)

We remark that this result also could have been deduced from Cauchy's residue theorem,
which implies that f(z) must have a simple pole with residue T (iw)'1 at the origin and
be real everywhere else on the real axis.

Appendix B

Asymptotic behavior at edge. We require the asymptotic behavior of the displace-
ments given by (3.9a, b) in conjunction with the solutions of (4.9a, b). Expanding the
radicals in (3.9a, b), we obtain

u = r'lRl{~i[F'(a) + iG'(p)] ~§if'F'ia) + 0(fAF')} (B.la)
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and

Now,

and

v = r-lRl{[F'(a) + iG'U3)] + ¥v~2G'{0) + O^G')}. (B.lb)

cos a ~ £e~'e[l + 0(£~2)] (B.2a)

cos /3 ~ r)e~te[\ + 0(?;~2)], (B.2b)

so that cos a and cos /3 are asymptotically related as in (4.3b). Substituting (B2a, b) in
(4.9a, b), we find that

F'(a) + iG'(0) = 0r2F', v"G'). (B.3)
It then follows from (B.la, b) that

u, v = r~lO(g~*F', V~2G') = 0(rF', rG'). (B.4)

Imposing the requirement (2.12), we obtain

F', G' = 0(r~l/2) = 0(j?u\ ij+1/2). (B.5)
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