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Hence

II V II < II X(t) || || b || + [' || X(t) || || X~\s) || || B(s) - A(a) || || y || ds. (10)
Jo

Thus, if we set

u(t) = || X-\t) || || B(t) - .4«) || || y(t) ||, (n)
v(t) = || B(t) - A(t) || || X(t) || || X'\t) ||,

we obtain the scalar inequality

u < c,v v u ds. (12)
Jo

This yields, as a consequence of the fundamental inequality, [2], or directly, the estimate

J u ds < Ci J v(s) exp v drj ds. (13)

By assumption f°° v ds < <=o. Hence the integral

f X-(S)[B(S) - A(s)]y ds (14)
Jo

converges. This means that we can write (9) in the form

y = X(t)b + X(t) ^ X-'(s)[5(s) - A(s)]t/ ds - X(t) £ X-'(s)[B(s) - ,4(s)]i/ ds (15)

which yields the stated result.
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BOUNDS ON THE ERROR IN THE
UNIT STEP RESPONSE OF A NETWORK*

By PAUL CHIRLIAN (New York University)

Summary. Bounds have been placed upon the error, in the unit step response of a
network, caused by a departure of the transfer function from its desired value. The
theorems developed place bounds on the error when it is caused by:

1) A departure of the amplitude function from zero, for frequencies above a stated
cut-off frequency.

2) Any deviation of the amplitude or phase function from its desired value.
These bounds are more readily evaluated than the actual errors, and thus prove useful
in the design of networks.

*Reeeived November 29, 1957. This paper is based on a portion of a thesis which has been accepted
by the faculty of the Graduate Division, College of Engineering, New York University, in partial
fulfillment of the requirements for the degree of Doctor of Engineering Science.
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Introduction. In many analysis or synthesis procedures, the transfer function of
a network only approximates the desired value. It is often necessary to know how this
approximation affects the transient response. Existing methods require tedious analytic
or graphic analysis to determine the deviation of the transient response. More readily
evaluated bounds, which eliminate the need for this analysis would be useful. Such
bounds have been developed in the theorems presented in the body of this paper.

The first considers the error, in the unit step response, caused by an assumption
that the transfer function is zero above a given cut-off frequency.

The remaining theorems deal with the errors, in the unit step response, which result
from deviation of either the amplitude or phase functions from their desired values.

Throughout this paper, the transfer function of the network in question will be
written as T(ai)e'e(-°> where the amplitude function T(co) is never negative and T{0) > 0.
In addition the magnitude of the per cent error in the unit step response, referred to its
final value will be written as | %5 |. That is, if A(t) is the actual unit step response and
Ai(t) is the approximate unit step response, then

l 07 S i _ 1 A(t) — Ai(t) I max X 100I /o I T(Q)

Bounds on the error in the unit step response caused by a band-limiting approximation.
It is often convenient to assume that the transfer function of a network is zero for all
values of frequency above a given cut-off frequency coc . This assumption, called a band
limiting approximation, introduces an error into the calculated value of the unit Step
response. It is desirable to bound this error so that the approximation can be justified.
This bound can be obtained by evaluating an integral of the form

/:
T(a) 1 ,
T(0) co

This evaluation may be simplified by replacing T(u)/T(0) by a new, more readily
integrated function G(co), where G(u) > T(a>)/T(0) for all co > coe and J", [(?(co)/«]dco
exists. The best bound on the error will be obtained when G(co) = T(co)/T(0) and this
procedure should always be considered as a first choice.

Theorem 1 will bound the error caused by the band limiting approximation.

Theorem 1. If T(ui)/T(0) < (r(co) for co > co,. , then

7r J Ue co

Proof. For any network the unit step response is given by

A(t) = §!T(0) + - f ~ sin M + »(«)] dcc.
IT Jo O)

Thus in this case the error is given by

The bound is then obtained by utilizing the fact that T(a)/T(Q) < G(co) and | sin [co< +
#(co)l | < 1. Theorem 1 will now be applied to a particular function which falls off as
1/co", where n > 0. This is of use in many commonly encountered networks. If G(co) =
e(coc/co)" the following is obtained.
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Corollary la. If T(co)/T(0) < e(coc/co)" for co > co,. and n > 0 then

| % 5 | < ^2f%.
717T

Some typical values given by this bound are
If t = 0.1 and n = 1 then | %S \ < 3.18%
If e = 0.707 (3 db down) and n = 3, then | %S | < 7.5%.
Bounds on the error in the unit step response caused by an approximation of the

amplitude or phase function. When an arbitrary transfer function is not realized
exactly, but is only approximated, an error appears in the unit step response.

The following theorems place bounds upon this error. The first of these deals with
an approximation of the amplitude function. In this case the transfer function of the
desired network is T(co)e''("). Often this transfer function is approximated by the transfer
function [T(to) + T,(co)] exp [j0(co)]. The amplitude error function T,(co) is a real function
of co which may be positive and negative. Then if Jo | T,(to) |/co dco exists, | %S j can
be bounded.

Theorem 21. If the amplitude error function 7\(co) exists, then

1%'i^ri^ — du.
£0

Proof. This theorem is proven by formally writing the expression for the error and
then utilizing the fact that | sin [cot + 0(co) | < 1.

If a function M(co) can be found such that | 7\(co)/T(0) | < M(u) for all co and the
term J" [M(co)/co] du is more readily evaluated than the integral of Theorem 2, then
it may prove convenient to replace | 71<(co)/71(0) | by M(co) in this theorem; the bound
developed in this case will be weaker than the one originally presented. However, in
some cases, it may be expedient to use the simpler integral to obtain a rough estimate
of the error.

The next two theorems will place a bound upon the error in the unit step response
produced by an approximation of the phase function. The transfer function of the desired
network is T(co) exp [j'0(co)]. Many times this transfer function is approximated by
T(co) exp jj[0(co) + <K<°)]}- The phase error function <£(co) is a real function of co which
may be positive and negative. If the integrals

T(u) [<ft(to)]2 ,
7X0) co

r T(u) 0(co) , a fLm ~ ^ mi L
exist then | %S | may be bounded.

Theorem 3. If the phase error function <£(co) exists, then

'The proof of this theorem is similar to one given by A. H. Zemanian, An approximate method of
evaluating integral transforms, J. Appl. Phys. 25, 262-266 (Feb. 1954)
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Proof. The first bound is obtained by formally evaluating the error and then utilizing
the fact that | sin [w£ + 0(a>)] | < 1 and | cos [cot + 0(co)] | < 1. The second equation
is obtained from the first by realizing that | sin x \ < \ x |. The first of these equations
will provide a smaller bound than the second. However, the second equation is more
readily evaluated and if is small, in the range of integration, then the results obtained
from this second equation can be quite satisfactory.

If the normalized amplitude function T(w)/T(0) is itself bounded, the results of
Theorem 3 are readily extended to obtain a bound which is more easily evaluated.

Corollary 3a. // T(co)/T(0) < M then

I % 8 I < 1°°7f% /o"^{2sin2 [nr] + I sin*(«>) I }
and

,%„s3»jjajri{KME + uw,.}fc
When networks whose amplitude functions are such that Theorems 1 or la indicate

that a negligible error is introduced by neglecting the response at frequencies greater
than then the upper limit of integration can be changed from °° to ojc in the equation
of Theorems 3 and 3a. This technique should especially be used when the effects of phase
correction is to be determined since extremely large phase errors usually occtir at fre-
quencies above coc . These phase errors usually have little bearing on the transient
response.

Conclusion. The theorems which have been developed here place bounds on the
error, in the unit step response, caused by a deviation of the transfer function from its
desired value.

In transient analysis procedures, it is often convenient to neglect the response of a
network above a given cut-off frequency. Theorems 1 and la bound the error produced
by such procedure. In addition, knowledge of results obtained in Theorems 1 and la
can simplify the design of a network, since these results indicate a frequency above
which the response is no longer important. Theorems 2, 3, and 3a bound the error caused
by a deviation of either the amplitude or phase function from its desired value. Deviation
of this type will occur in synthesis procedures, where the desired transfer function
cannot be exactly realized with a finite number of realizable elements.

When a network is designed to produce a desired unit step response, the error of the
transfer function, in itself, has no direct significance. However, this is often the known
error. Theorems 2, 3, or 3a can then be employed to relate the error in either the ampli-
tude or phase function, to the error in the unit step response.

The use of these theorems, therefore, can provide valuable information to the net-
work designer.
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