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THE BLASIUS EQUATION WITH THREE-POINT BOUNDARY CONDITIONS*
BY

L. G. NAPOLITANO
Polytechnic Institute of Brooklyn

Abstract. The Blasius equation subject to three-point boundary conditions, de-
scribing the interaction between two parallel streams, is solved by way of a series in
terms of ascending powers of the ratio X = (u, — u2)/ul , where the u{'s are the outer
streams' velocities.

The first three terms of the series are analytically expressed in terms of the repeated
integrals of the complementary error function (t" erfc 7?) and of the repeated integrals
of the square of the successive integrals of the complementary error function (jT erfc 17).
These functions often appear in problems leading to extended heat-conduction type of
equations. A recurrence formula for f 1 erfc r\ is established and formulae relating the
functions % erfc (—77) and jmf erfc (±1?) to available tabulated values of the functions
t" erfc (77) are derived.

The first three approximations to the Blasius function and to its first two derivatives
are also presented in tabulated form with four significant figures. Test on the convergence
of the series has been made by comparison with some exact solutions obtained by high
speed computing machine. The comparison, extended to the physically essential quan-
tities, shows that:

(1) The Blasius function itself is slightly less accurate than its second and first
derivatives.

(2) Two terms of the series for X up to 0.5 and three terms for X up to 0.7 yield
extremely accurate results. The errors in the first two derivatives of the Blasius
functions are always contained within less than one per cent.

1. Introduction. The solution of the Blasius equation with three-point boundary
conditions has per se a considerable academic interest. The availability of closed form
solution has, however, become a practical necessity in view of the recent findings which
have shown the essential and unique role played by this equation in isobaric mixing
flows. It can indeed be said that all the types of plane two-dimensional interactions
between two streams are governed by the Blasius equation with three-point boundary
conditions.

The reducibility of the basic Prandtl equations to the Blasius equation with pertinent
boundary conditions was first shown by Gortler [1]** for the laminar incompressible
mixing of uniform streams and, subsequently [2], for the turbulent case also. The present
author showed [3] that the same happens for the compressible laminar case. A recent
investigation by the present author [4] has also brought forth some evidence of an
empirical correlation existing between turbulent and laminar compressible mixing.
It was found that, under the assumption of a unitary turbulent Prandtl number, the
velocity profiles are considerably independent of Mach numbers and density ratio and

•Received December 19, 1957. This work was sponsored in part by the NACA under Contract
NAw 6480. Some of the results have appeared in Ref. [9] which was issued in a limited number of copies
not for circulation.

♦♦Numbers in brackets refer to the bibliography at the end of the paper.
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•
can therefore be deduced from the solution of the Blasius equation. This statement has
an even larger implication insofar as it applies whenever the density ratio can be given
a parabolic dependence on the velocity ratio. Thus the field of application of the Blasius
function is widened to include a large variety of interactions between streams of different
gases [5]. Solutions of the Blasius equation are furthermore needed in problems of laminar
and turbulent mixing of non-uniform constant vorticity streams. These problems are
solved by means of a series solution in terms of the "vorticity numbers": the zeroth
order terms is the Blasius function and the coefficient of the equations for the higher
order terms are all functions of the Blasius function and its derivatives [6].

The present paper is mainly concerned with the solution of the Blasius equation and
not with its derivation for which reference is made to the pertinent literature. The solu-
tion is obtained as a series in terms of the parameter X = («i — u2)/ul . The first three
terms (up to X3) are given in explicit closed form and in tabulated forms. Owing to the
complicated nature of the terms of the series, its convergence could not be formally
established. The results of the present method are, however, compared with some exact
solutions obtained by high speed computing machine calculations.

In the course of the mathematical treatment there often appeared successive repeated
integrals of the complementary error function (symbolically indicated by F erfc ??)
and successive repeated integrals of the square of the functions i* erfc 17. As this feature
is common to a large variety of physical problems which can be reduced to extended heat
conduction type of equations, a summary study of those functions is presented in Appen-
dixes A and B. Formulae necessary to compute the values of i" erfc (—57) in terms of
the already tabulated values (up to n = 11) of 1 erfc rj are developed. A recurrence
formula is established for the functions fV erfc 17 defined as the successive integrals
of the functions (in erfc r/)2. Finally relationships giving the functions jT erfc 77 in
terms of the functions ? erfc 77 are derived which afford a rapid evaluation of the func-
tions themselves.

This work is part of a program of investigation on mixing phenomena carried out at
the Polytechnic Institute of Brooklyn under the supervision of Prof. Antonio Ferri.

2. Solution of the Blasius equation. The equation to be solved is

/"' + 2//" = 0 (1)

and it is subject to the following three-point boundary conditions

lim /' = 1 lim /' = 1 - X /(0) =0 0 < X < 1. (2)
f-»+oo f-»— 00

Quantities related to the mixing of two streams are expressible in terms of the function
/(f) and its derivatives as follows

i/- = 2(lmi z)'/2/(f),

f - + *.

U = Ml/'(f),

y = (v)'^ " k)f' ~ fl

m (3)
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In these equations x and y are space coordinates whose origin is taken to be at the
point where the interaction begins, u and v are the corresponding velocity components,
\p is the stream function defined by« = ^;(i= —\p0 and v is the kinematic viscosity coeffi-
cient. The quantity k is an arbitrary constant whose presence follows from an interesting
property of the Prandtl boundary layer equations. These equations are invariant under
the transformation

Vi = y + s(x),

Xi = x,

u(x, y) = w(x, , j/0, ^
ds

v(x, y) = , yt) - u(x: , j/,)

Asymptotic boundary conditions on the s-component of the velocity remain also
unchanged while boundary conditions on the ^-component are changed. The mathe-
matical implication of this fact lies in the freedom of choosing arbitrarily the third
boundary condition for the Blasius equation. The physical implication is the resulting
indeterminacy of the wake orientation insofar as the transformation back into the physical
plane cannot be performed unless k is known. Additional physical considerations, such
as the one suggested by von Karman that a free wake be acted upon by a zero resultant
force in the ^-direction, will uniquely determine this constant k and thus will fix the
orientation of the wake. The solution herein presented relates to a wake whose streamline
through the origin satisfies the equation y = —2k(vx/ul)1/2.

The following series solution of Eq. (1) in ascending powers of X is sought

/ = Z XV. • (5)«
Equation (5) is substituted into Eq. (1) and the coefficients of the successive powers

of X are set equal to zero. The zeroth order approximation must satisfy the following
equation

fo" + 2/0/o' = 0 (6)

with

lim /o = 1,
(7)

MO) = 0.
The pertinent solution is /0 = f and it corresponds, physically, to zero mixing. The
equation for the first approximation is, by taking the zeroth order solution into account

11" + 2f/r = 0 (8)
with

lim /( = 0, lim f[ = —1,
f-+«o {--.-CO ^

/.(0) = o.
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The solution of Eq. (8) is

U = W_,/s [' [' e~b' db - (10)
Jo «/o

Finally, the ith approximation (i > 2) must satisfy the equation

+ 2f/." = (11)
where the i2,-(f) are functions, at most, of the (i — l)th solution and are given by

«,(f) = -2 E (12)
h-0

Equation (11) is subject to the boundary conditions

lim /;(0) = 0, /.(0) = 0, (i > 2) (13)

and admits the solution

/. = {*YnCuiU - GO-1" dt [ e~b' db f R^a) da (14)
JO Jt Jo

with

Cy.t = -W"1 f e~b' db fb Rt(a) da. (15)
J-co JO

Successive approximations to the solution / can thus be readily determined to any order.
The task is considerably simplified if Eq. (14) is expressed in terms of the comple-

mentary error function and of related functions. In this problem, indeed, as well as in
several other problems leading to extended heat-conduction type of equation, the solution
can be expressed rather simply in terms of the following functions

i" erfc 7j = / / (erfc »?„) dv3 dt]n ,
J r\ Jr\% Jijn

jmin erfc V = [ [ f (l" erfc VnY dr^ • ■ • dr)m ,
J TJ «/|ja Jy\m

Tmn(rj) = f (im erfc l)-(? erfc t) dt.
J i)

Of these functions only the first ones, usually referred to as repeated integrals of the
complementary error function, have been studied. Hartree [7] has shown some of their
properties and applications and, more recently, Kaye [8] has tabulated them, up to the
eleventh repeated integral, for positive value of the argument.

The functions i erfc ( — y) are considered in Appendix A wherein their expressions
in terms of the functions z" erfc rj and their asymptotic behavior are presented. A sum-
mary study of the functions jm? erfc t] is given in Appendix B. Therein the existence of
a recurrence formula is proved and expressions relating the functions jT erfc (±jj)
and Tm„{±rj) to the repeated integrals of the error function are given.

If simplified notation such as
in erfc = in,

jmin erfc 17 = r? t
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are adopted, the first approximations to the function / can be given simple analytical
expressions as follows:

First approximation—

u = \[i - (x)-,/2],

fi = — \i" = erfc
/," = (T)-"Vr\

Second approximation—

u - -<i«,)-"»- o+{f -|]+![| -*] ■
/» - £ -

/;' = (x)-,/vr,[(T)-,/,r - i + i%

TABLE 1
Blasius equation with three-point boundary conditions—Values of fi

r /.(r) M-r) Mr) M-r) Mr) /»(—r)
0.00 .0000 .0000 .0000 .0000 .0000 .0000
0.01 -.0050 . 0050 . 0004 -.0006 . 0002 -.0002
0.02 -.0099 . 0101 .0009 -.0009 . 0004 -.0004
0.04 -.0195 . 0204 . 0017 -.0032 . 0009 -.0009
0.06 -.0290 . 0310 . 0025 -.0034 . 0013 -.0013
0.08 -.0382 .0418 . 0032 -.0041 .0017 -.0018
0.10 -.0472 .0528 .0038 -.0052 .0021 -.0023
0.12 -.0559 . 0640 . 0044 -.0065 . 0025 -.0028
0.14 -.0645 .0755 .0050 -.0077 .0029 -.0033
0.16 -.0728 . 0872 . 0054 -.0090 . 0033 -.0038
0.18 -.0809 . 0991 .0058 -.0104 . 0037 -.0043
0.20 -.0888 .1112 . 0063 -.0118 . 0041 -.0048
0.30 -.1250 .1750 .0078 -.0196 .0058 -.0075
0.40 -.1560 . 2440 . 0075 -.0295 . 0074 -.0104
0.50 -.1823 . 3177 . 0069 -.0381 .0085 -.0136
0.60 -.2041 .3959 . 0056 -.0503 . 0098 -.0171
0.70 -.2220 .4779 .0037 -.0610 .0107 -.0209
0.80 -.2365 .5635 .0016 -.0705 .0113 -.0250
0.90 -.2480 . 6520 -.0005 -.0778 . 0018 -.0295
1.00 -.2570 . 7430 -.0024 -.0867 . 0120 -.0342
1.20 -.2691 .9309 -.0060 -.1017 .0122 -.0437
1.40 -.2758 1.1243 -.0085 -.1126 .0121 -.0529
1.60 -.2792 1.3208 -.0102 -.1199 . 0119 -.0609
1.80 -.2809 1.5191 -.0112 -.1238 . 0117 -.0674
2.00 -.2816 1.7184 -.0117 -.1268 .0116 -.0720
2.20 -.2819 1.9181 -.0119 -.1280 .0115 -.0750
2.40 -.2820 2.1189 -.0120 -.1286 . 0115 -.0765
2.60 -.2821 2.3179 -.0121 -.1288 .0115 -.0771
2.80 -.2821 2.5179 -.0121 -.1289 . 0115 -.0773
3.00 -.2821 2.7179 -.0121 -.1289 . 0115 -.0773
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Third approximation—

n = f3 + f3(- »)/(,

Fi = ~2 [i + Sr1 + {iy + I (£ " Te " ^)]
lfr*/ \ —1/2 *2 /_*\21 I ^+ 7[2(T)-1/ai2 - (i)2] - +

4(7r) 1 4(2tr) 1/2

r: - f,<- -we + + ̂  (| + <)
i2 - 1) - (7r)_,/Vf - | A']-t'J(t

TABLE 2
Blasius equation with three-point boundary conditions—Values of /'

r /1(f) /K-f) /'.(f) /'.(- f) /5(f) /'»(-f)
0.0 -.5000 -.5000 . 0454 . 0454 . 0222 .0222

.01 -.4943 -.5056 . 0440 . 0468 . 0220 .0224

.02 -.4887 -.5113 . 0426 . 0482 . 0218 .0225

.04 -.4774 -.5225 . 0398 . 0510 . 0215 . 0229

.06 -.4662 -.5338 .0370 .0538 .0211 .0233

.08 -.4550 -.5450 .0342 .0566 .0208 .0236

.10 -.4438 -.5562 . 0314 . 0594 . 0204 .0240

.12 -.4326 -.5674 . 0287 .0621 .0201 .0244

.14 -.4215 -.5785 .0260 .0648 .0197 .0247

.16 -.4105 -.5895 . 0234 . 0674 . 0193 . 0251

.18 -.3995 -.6005 . 0218 . 0700 .0190 . 0255

.20 -.3886 -.6113 .0183 .0725 .0186 .0259

.30 -.3357 -.6643 .0080 .0839 .0166 .0280

.40 -.2858 -.7142 -.0033 . 0929 . 0146 .0304

.50 -.2397 -.7602 -.0109 . 0990 . 0123 . 0332

.60 -.1981 -.8019 -.0163 .1018 . 0098 .0364

.70 -.1611 -.8389 -.0195 .1014 .0075 .0399

.80 -.1289 -.8710 -.0210 . 0980 . 0052 .0433

.90 -.1015 -.8984 -.0209 . 0920 . 0034 .0450
1.00 -.0786 -.9213 -.0197 .0841 .0018 .0475

.20 -.0448 -.9551 -.0154 . 0648 .0000 .0476

.40 -.0238 -.9761 -.0105 .0451 -.0010 .0439

.60 -.0118 -0.9882 -.0064 . 0285 -.0012 .0369

.80 -.0054 -0.9945 -.0035 .0123 -.0008 .0278
2.00 -.0023 -0.9977 -.0017 . 0086 -.0004 . 0010
2.20 -.0009 -0.9991 -.0008 . 0041 -.0002 . 0107
2.40 -.0003 -0.9996 -.0003 . 0018 -.0001 .0045
2.60 -.0001 -0.9999 -.0001 .0007 -.0001 .0018
2.80 . 0000 -1.0000 . 0000 . 0003 . 0000 . 0002
3.00 .0000 -1.0000 .0000 .0001 .0000 .0000
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TABLE 3
Btasius equation with three-point boundary conditions—Values oj /"

r /{'(f) /{'(-r) /S'(f) /"(- f) /"(f) /"(-f)
.00 . 5642 . 5642 -.1410 -.1410 -.0176 -.0176
.01 .5641 .5641 -.1410 -.1410 -.0176 -.0176
.02 .5640 .5640 -.1409 -.1409 -.0177 -.0177
.04 .5633 .5633 -.1404 -.1404 -.0177 -.0177
.06 . 5622 . 5622 -.1395 -.1395 -.0178 -.0178
.08 . 5606 . 5606 -.1384 -.1383 -.0179 -.0179
.10 . 5586 . 5586 -.1370 -.1367 -.0180 -.0180
.12 .5561 .5561 -.1352 -.1348 -.0180 -.0182
.14 . 5532 . 5532 -.1332 -.1326 -.0182 -.0184
.16 . 5499 . 5499 -.1309 -.1300 -.0186 -.0188
.18 . 5462 . 5462 -.1283 -.1271 -.0188 -.0193
.20 .5421 .5421 -.1255 -.1239 -.0190 -.0200
.30 . 5156 . 5156 -.1083 -.1031 -.0201 -.0225
.40 . 4808 . 4808 -.0874 -.0760 -.0216 -.0255
.50 .4394 .4394 -.0650 -.0448 -.0235 -.0300
.60 . 3936 . 3936 -.0430 -.0121 -.0265 -.0345
.70 . 3456 . 3456 -.0230 . 0195 -.0250 —.0350
.80 . 2975 .2975 -.0061 .0478 -.0218 -.0320
.90 . 2510 . 2510 . 0070 . 0708 -.0171 -.0205

1.00 . 2075 . 2075 . 0165 . 0875 . 0118 -.0100
1.20 .1337 .1337 .0246 .1011 .0072 .0100
1.40 .0795 .0795 .0233 .0927 .0031 .0260
1.60 .0436 .0436 .0176 .0722 .0015 .0435
1.80 .0221 .0221 .0114 .0491 .0028 .0480
2.00 .0103 .0103 .0065 .0297 .0018 .0440
2.20 .0045 .0045 .0033 .0160 .0007 .0350'
2.40 .0018 .0018 .0015 .0078 .0004 .0220
2.60 .0006 .0006 .0006 .0035 .0002 .0105
2.80 .0002 .0002 .0002 .0014 .0001 .0050
3.00 .0001 .0001 .0001 .0005 .0001 .0008

The first three approximations to the functions /(f), /'(f) and /"(f) have been com-
puted to six significant figures. Values of /,(f), /{(f) and /"(f), (i = 1, 2, 3) are tabulated
in Tables 1 and 3 with four significant figures.

3. Accuracy of the solution. The convergence of the series given by Eq. (5) could
not be formally established, owing to the complexity of the relative terms. Practical
indications about the rapidity of the convergence, however, are derived by comparing
the results with those of some exact solutions obtained with the D12 Differential Analyzer
presently in operation at the Centro di Calcolo Elettronico of the University of Naples.1

The following indicative values for X were considered: X = 0.2678; X = 0.4796;
X = 0.5541; X = 0.6915. Comparison was extended to the following physically meaningful
quantities:

i) /'(0), (proportional to the component u of the velocity along the £-axis);

'These calculations are part of a larger program of high speed machine solution of turbulent mixing
flows sponsored by the United States Air Force through the Air Force Office of Scientific Research,
Air Research and Development Command, under Contract AF 18(600)-693, Project No. 17500. The
cooperation of Prof. Giorgio Savastano, Associate Director of the C. C. E., is gratefully acknowledged.
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ii) /"(0), (proportional to the shear stress along the z-axis);
iii) [f/' — /], (proportional, for fc = 0, to the ^-component of the velocity

at the edges of the wake).

Values obtained from the exact solutions and from the first, second and third approxi-
mations to the function /(f) are listed in Table 4.

TABLE 4
Comparison between exact and approximate solutions

Exact I Approx. II Approx. Ill Approx.
\ = 0.26783
/'(0) 0.8698 0.8661 0.8693 0.8697
/"(0) 0.1406 0.1511 0.1410 0.1407
lim [{"/' — /] 0.0762 0.0755 0.0764 0.0762

lim If/'-/] 0.0865 0.0755 0.0847 0.0862
f-m
X = 0.47961
/'(0) 0.7739 0.7602 0.7706 0.7730
/"(0) 0.2360 0.2706 0.2382 0.2362
lim [f/' — /] 0.1362 0.1353 0.1381 0.1368

lim [f/' — /] 0.1765 0.1353 0.1649 0.1734
X= 0.55412
/'(0) 0.7421 0.7229 0.7368 0.7406
/"(0) 0.2660 0.3126 0.2693 0.2663
lim[f/' -/] 0.1568 0.1563 0.1600 0.1580

lim [f/'-/] 0.2154 0.1563 0.1959 0.2090
X+: 0.69147
/'(0) 0.6870 0.6543 0.6760 0.6833
/"(0) 0.3158 0.3901 0.3227 0.3169
lim [f/' — /] 0.1937 0.1951 0.2009 0.1971

lim [ff - /] 0.3003 0.1951 0.2567 0.2822
r-»

The following comments are proper:

(1) The best agreement is obtained for /", followed, in order, by /' and /.
(2) The accuracy decreases with X and, for a given X, is greater for f large than for

I -f I large.
(3) The 7/-component of the velocity at the lower edge of the wake always exhibits

the maximum percental error.
(4) The first two approximations are more than satisfactory up to values of X = 0.5.

The errors in /'(0) and /"(0) are less than one per cent.
(5) Three terms of the series are needed for values of X greater than 0.5. With three;

terms the errors are nearly always contained within less than one per cent up
to X equal to 0.7. The only exception lies again in the value of the ^-component
of the velocity at the lower edge of the wake. The approximate value is 6%
smaller than the exact one.
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Appendix A

The error function and its repeated integrals. The error function is defined by

erf 17 = ytu* f e~" dt (Al)
vT/ Jo

and the complement of the error function, erfc 77, by

2 f"erfc v = 1 — erf ?? = / e dt. (A2)
V1/

The nth repeated integral of erfc 77 is symbolically defined as

i" erfc i] = f (i"~l erfc t) dt (n > 1) (A3)
Jrj

with

i" erfc jj = erfc 77. (A4)

The functions given by Eq. (A3) are tabulated, up to n = 11, in Ref. [8] for positive
values of the variable 17.

It is of interest to extend the definition of 1 erfc 77 to negative values of 77 as follows

i" erfc (— 77) = f (in_1 erfc t) dt, (A5)
J-v

and to see whether it is possible to express them as functions of the known tabulated
values of 1 erfc 77.

In consistence with the notation given in Eq. (A3), the first derivative of the error
function is defined by

(erfc 77) = i"1 erfc 77 = e"1'. (A6)

It is, apparently, an even function, so that

r1 erfc (—77) = f1 erfc 77, (A7)
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whereas
i° erfc (— rj) = 2 — i° erfc 7(A8)

By repeated application of the following recurrence formula [7], valid for n > 1

2m" erfc 7? = t"~2 erfc 77 — 2i7i"-1 erfc 77 (A9)

it is then easily verified that the following general identity holds

in erfc (- 77) = (-1)"+V erfc , + 2g [! + (-1)" ^ erfc (Q)_ (A1Q)

In deriving Eq. (A10) it has been taken into account that Eq. (A9) yields, for 77 = 0

2ni" erfc (0) = i""2 erfc (0)
or

r erfc (0) -

Equation (A10) gives the required relation between the repeated integrals of the error
function for negative and positive values of the independent variables. Thus, for instance,
the first three integrals in the negative range of 77 are simply expressed by

i erfc (—17) = 2j? + i erfc 77,

12 erfc (—77) = — i2 erfc t] + 172 + 2z2 erfc (0), (All)

13 erfc (—ij) = 1 erfc 77 + 2-qi erfc (0) + 773/3.

Apparently these repeated integrals will not converge as 77 —> — =». Their asymptotic
behavior, for | — 77 | large, is

r erfc (-77) ~(-l)n+1 ^ + 2 Z + (~1)n *] J i"'" erfc (0). (A12)

Appendix B

Repeated integrals of the functions (z° erfc ?7)2. Let the successive integrals of the
functions (C erfc 77)2 be symbolically indicated by

jmin erfc 77 = f erfc t) dt (m > 0) /T> .
J i) C-dI)

(n > 0)
with

j°in erfc 77 = (in erfc 77)2. (B2)

It is desired to express these functions in terms of the repeated integrals of the error
function.

The relationship is immediate for the two particular cases: n — — 1 (to any positive
integers) and to = 1 (n > 0).

Indeed when to = 1 and n = —1, it is by definition

ji ' erfc 77 = |j^T72 e ''J dt, (B3)
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so that [see Eq. (A3)]

jT1 erfc V = 01/2 erfc fo(2),/a]. (B4)

Repeated integrations easily yield the required relation between jmi~l erfc ?? and
the repeated integrals of erfc n as

roll— (m/2)

fr1 erfc v = 1 ,1/2 r_1 erfc [ij(2),/2]. (B5)
W

A corresponding expression, valid for m = 1 and any n > 0 can be obtained by
repeated integrations by parts. As it is easy to verify, the following identity will result

(B6)
it" erfc n = V* (—1)'1+1 ^ — {jn-* erfc v.{>~h+1 erfc v1 v J (2n + l)!(n - + 1)! * v v

lol/2+n

- ,(z-k+1 erfc „)2} + (-1)"+,W-^ erfc [(2)%].

In deriving Eq. (B6), the following identity

j-'i" erfc v = -4- (»" erfc t,)2 = 2i" erfc rtr?~l erfc r, (B7)at]

which constitutes an obvious extension of the definition (Bl) to the case m = —1,
has been taken into account.

In the most general case use must be made of a recurrence formula. This formula
can be derived by successive and repeated integration by parts of Eq. (Bl). By taking
Eq. (A9) into consideration one obtains

(2n + iri)jmin erfc i\ = erfc ?j — rerfc ?? — fV-1 erfc v (B8)

valid for m > 1 and n > 0.
The recurrence formula (B8) together with Eqs. (B5) and (B6) afford a rapid com-

putation of the functions /V erfc r?. Their extensions to negative values of the argument
are readily accomplished by means of Eq. (A10).

The first few functions jT erfc y, are explicited and their values at y = 0 are given.
A simplified notation such as

in erfc r, ■ »" (B9)

jmi" erfc r) = jmi"

is adopted. Thus

ji° = iV1 - v(iy - ^),/V[,(2)1/2]

fi° = t(*Y - hji° ~ (2)-3/ai[,(2)l/a], (B10)

ji = in0 - §„«)« ~ fr",
?i = Hi)2 - inji - lfi°,
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and

(Bll)
ji°(0) = W",/2[2 - (2)1/2], 4jV(0) = 1 - I ,

3ji(0) = W~1/2[(2),/2 - 1], 4j2i(0) = i - \-

To conclude, the integral

T„(i)) = f im erfc <■»" erfc < (n > m)

will be evaluated.
Repeated integrations by parts and consideration of Eq. (B6) yield

Tmn{r>) = [(»""* erfc „)2] + £ (-l)'-'[f+' erfc erfc „] (B12)
Z „-i

when n — m = 2h + 1, and

Tmn(v) = (-l)^(m+n)/2 erfc t, + Z erfc erfc „] (B13)
r-1

when n — m = 2h.


